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In the present work the author suggests a return to the idea of “hidden variables” as a physical field 
(ether). It is shown below that the Schrödinger equation can be derived from the deterministic laws of classical 
mechanics under the assumption that the ether exists. The reasoning is based to a great extent on the works of  
N.G.Chetaev.  Formulas derived in the present work for the velocity of an elementary particle and for the forces 
exerted on the particle by the ether coincide precisely with those derived by V.A. Kotel’nikov using the stand-
ard probabilistic interpretation of the Schrödinger equation. Therefore, the proposed classical approach agrees 
with the probabilistic one, and hence with standard experiments. The mathematical development of the pro-
posed model when applied to an atom leads to the idea that structures are formed in the ether inside the atom. 
From the standpoint of this model, De Broglie’s “law of phase harmony” has a new physical interpretation. 

 

1. Hidden Variables 

As is well known, the Schrödinger equation describes many 
observations very well, but there are still heated discussions 
among scientists about its physical interpretation. 

Currently, the probabilistic interpretation is the most com-
mon one.  Its proponents, however, have difficulty explaining the 
results of experiments with nonclassical optical effects (e.g., the 
two-photon interference, teleportation of polarization of the pho-
ton, etc.)  The probabilistic approach in these cases leads to nega-
tive probabilities.  Note that any known interpretations of the 
quantum formalism for the case of “nonclassical” light are also 
inconsistent with the main concepts of special relativity. 

The probabilistic interpretation is also unable to describe the 
behavior of quantum systems in living matter (biomolecules) [1].  
E. Schrödinger was the first to write about this conundrum: “A 
single group of atoms existing only in one copy produces orderly 
events, marvelously tuned in with each other and with the envi-
ronment according to most subtle laws... we are here obviously 
faced with events whose regular and lawful unfolding is guided 
by a ‘mechanism’ entirely different from the ‘probability mecha-
nism’ of physics”. 

Historically, the issue of incompleteness in the description of 
physical reality by quantum mechanics was put forward for the 
first time by Einstein, Podolsky, and Rosen in 1935.  They pro-
posed the existence of «hidden variables», that is such properties 
of elementary particles that allow a quantum system’s consisten-
cy with the deterministic theory of elementary particles.  They 
also referred to the hidden variables as being “local”.  Later it 
was proven that «hidden variables» can be either: 1) “nonlocal” 
(the “nonlocally” is the existence of a connection between any 
spatially separated measurement devices) or 2) a field of a special 
type wherein disturbances can spread at speeds greater than the 
speed of light.  In general both hypotheses are inconsistent with 
the main concepts of special relativity. 

 In order not to be in conflict with special relativity the majori-
ty of the physics community accepted the point of view that the 
probabilistic description of quantum mechanics cannot be avoid-
ed.  Followers of the Copenhagen school (which is the most 

widely accepted) insist on the point of view that physics is the 
science which rests solely with measurements.  Questions like 
“where was a particle before it was detected by a device” does 
not make sense from this viewpoint. 

According to quantum mechanics, the particle’s state, at any 
given time, is completely determined by its wave function. Two 
processes can effect a wave function if its evolution is in accord-
ance with 1) the Schrödinger equation, and 2) the process of 
measurement. Disagreements concerning the interpretation of 
the measurement process arise even within the Copenhagen 
school. There are two views regarding the wave function: on the 
one hand it can be viewed as a physical aspect of reality that un-
dergoes a “collapse” as a result of a measurement; on the other 
hand the wave function can be used as simply a mathematical 
tool whose sole purpose is its role in calculating the probability 
of experimental results. The above two viewpoints leave a num-
ber of questions open. 

As a result more and more physicists are inclined towards 
neither interpretation, which was expressed by physicist David 
Mermin as “Shut up and calculate!” 

One of the basic assertions of quantum theory is that as a re-
sult of any measurement process we can obtain only one of two 
complementary pairs precisely: either spatial position or momen-
tum in one case, versus energy or time in another case, up to the 
precision allowed by the Heisenberg principal.  Since any meas-
urement disturbs the system both members of a complementary 
pair cannot be resolved, i.e. we cannot assign a particle a position 
and a velocity obtained from different measurements, even when 
the state of the particle is described by the same wave function. 
However, it would not conflict with the mathematical formalism 
of quantum mechanics and the results of experiments if one as-
sumes that velocity and position of the particles exists a priori 
(before measurement). 

The opinion of the author is also in concert with the idea that 
hidden variables exist.  It is proven below that the Schrödinger 
equation can be derived solely from the deterministic laws of 
classical mechanics.  N.G. Chetaev (1936) showed in his works [2] 
the analogy between the equation describing the stable motion of 
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a mechanical system, under the action of conservative forces and 
Schrödinger’s equation. In the author’s view, this analogy is not 
coincidental.  Further mathematical development of Chetaev’s 
works, as shown below, leads to the conclusion that the motion 
of elementary particles can have a deterministic interpretation if 
the influence of a particular medium (ether) is taken into consid-
eration.  

An article by V.A. Katel’nikov on hidden variables was re-
cently published posthumously in Physics-Uspekhi [3].  
Katel’nikov based his work on the Schrödinger equation and the 
probabilistic interpretation of the  function. He derived the 

velocity and trajectory of a particle under the assumption that its 
motion satisfies the Schrödinger equation. He showed that in this 
case the particle should be moving under the influence of two 
forces: a classical force, described by the potential U, and a 
“quantum” force exerted on the particle by a “quasifield” (the 
term introduce by Katel’nikov). The formulas for the particle’s 
velocity and the “quantum” force obtained by Katel’nikov, coin-
cide completely with the formulas obtained in this work. The 
approach of classical mechanics is therefore shown to be in 
agreement with the probabilistic one, and hence with experi-
ments. 

2. The Schrödinger Equation as a Condition of 
Stability of a Mechanical System 

The Schrödinger equation is a postulate of quantum mechan-
ics.  One can attempt to derive a postulate in order to look for a 
way to “extend the existing model”, that is to bring new concepts 
into science, and to look at the problem by taking into account 
deeper processes of nature.  The derivation, presented below, 
does not require the introduction of new postulates in physics, 
which makes it especially interesting.  The Schrödinger equation 
is derived from the laws of deterministic classical mechanics, 
which allows an interpretation from a deterministic point of view 
rather than from the traditional probabilistic view.  The reason-
ing in this chapter is based a great deal on the works of Chetaev 
[2]. 

Consider the motion of a mechanical system under the action 
of conserved forces that do not depend on time t explicitly.  In 
this case the kinetic energy of the system can be represented as 
follows: 

 2T ij i j
i, j

= a p p , (1) 

with which is associated the energy integral  

 constH = T U = ε = , (2) 

where 1( ,..., )nU q q  is potential energy , 1 ... nq , ,q  are generalized 

coordinates, and 1 ... np , ,p  are generalized momenta. 

As is known, Newton’s equation for such a system using 
Hamilton’s equations takes the form 

 j

j

dq H
=

dt p



,    j

j

dp H
=

dt q





 (3) 

Eqs. (3) are the equations for characteristics for the following 
partial derivative equation of the first order (known as the Jacobi 
equation): 
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If the energy integral exists and the force function does not 
depend explicitly on time, then the complete integral of the Jaco-
bi equation takes the following simple form: 

  1 1,..., ; ,...,n nS t V q q a a    (5) 

Equation (5) yields a system of canonical equations: 
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Let us introduce a function ( )S . In view of (5), the following 

equations result: 2
tt      (here 

d
dS
   ) , t

d
dt
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 (7) 

From this result it follows that  

 ij ij i j
i j

ψ
L ψ a = ψ a p p +ψ L S

q q

              
   (8) 

If we represent the energy integral (2) as  

  2( )ij i ja p p U  , (9) 

then equation (8) can be written as 

 
 

2
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tt

ε U
L ψ = ψ +ψ'L S

ε


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Now we explore the mechanical motion of the system de-
scribed by Eqs. (3) for stability. As is known from the theory of 
stability, the variational Poincaré equation with respect to a vari-
ation of 1 ... nq , ,q has the form:  

 i
is j

j s

d S
a

dt q q
 

  
     
  (11) 

Assume now that under some particular set of initial condi-
tions the non-perturbed object’s motion is stable.  Then the char-
acteristic number for the expression 

 exp exprj
r j

S
a dt = L S dt

q q

         
   (12) 

must be zero. In the primitive case this requirement is satisfied if 
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Thus for stable motion (and only for it) Eq. (10) simplifies and 
takes the form: 
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Let us search for a solution of the above equation for the mo-
tion of a particle with mass m.  Denote by r


 a position vector of a 
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particle. From all possible functions  let us look for those that 
can be represented in the form: 

  exp exp
i i
S t r

         
   


 

 (15) 

Substituting (15) into Eq. (14), the latter takes the form of the 
Schrödinger equation.  

    
2( , )

, ( ) ,
2

r t
i r t U r r t

t m
  

   


     (16) 

We now consider a special case of conservative forces that do 
not depend on time t explicitly here. Applying substitution (15) 
once again to the last equation, we obtain the time-independent 
Schrödinger equation 

      
2

( )
2

r U r r r
m

     
   

 (17) 

This derivation of the Schrödinger equation encounters a 
problem when applied to the hydrogen atom. In the case of a 
potential   1U r  the solutions of Eq. (3) are elliptical trajectories. 

However elliptical trajectories that satisfy the conditions of stabil-
ity (14) do not satisfy equation (17). Thus, we must search for 
such additional conservative forces with potential 

1( ,..., )nW q q that make it possible to write the condition of stabil-

ity (14) in the form of the stationary Schrödinger equation (17) 
(i.e. which do not contain W explicitly). Note, that such forces are 
not small. 

3. Forces Exerted on a Particle by Ether 

Assume that in addition to the primary forces represented by 
potential 1( ,..., )nU q q  there are also forces characterized by a po-

tential 1( ,..., )nW q q . Now consider the stability of such motion 

under action of the above two forces with respect to a variation 
of coordinates 1 ... nq , ,q .  

We now represent the time-independent component of the 
function  S as  

  ( ) expr A iV 


 , (18) 

where A is some real function of coordinates iq .  Combining all 

of the above yields 
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Consequently, in view of (6), the expression (13) takes the 
form 
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Conservation of energy can thus be expressed through the 
function   as: 

 
2 1 1 1 1

2 ij
i i j jij

A A
a U W

q A q q A q
  

 

                   


 (21) 

Adding the above equation and Eq. (20), the necessary condi-
tion of stability in the first approximation takes the form 
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If function A  satisfies 

 2
, ,

1 2 2
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then Eq. (22) does not contain W . The expression (23) can be split 
into real and imaginary parts: 
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Thus if the potential W has the structure defined by Eqs. (24), 
the condition of stability (22) takes the form of the stationary 
Schrödinger equation: 
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 
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For a case of one particle Eq. (25) takes the form of Eq. (17).  
Eq. (18) and Eq. (6) combined give the speed of the particle in 

the form 

 
1

( )v r V
m

 
 

 (26) 

The additional force acting on the particle is equal to 

 
2

2q
A

F W
m A


   


 (27) 

Combining Eq. (18), the condition of stability (20), Eq. (25) 
and Eq. (27), the time-independent Schrödinger equation (25) 
takes the form of the law of conservation of energy of stable or-
bits. 

 21
2

mv W U    . (28) 

Thus, if a particular solution of the Schrödinger equation is 
given, the velocity of the particle and the expression for the addi-
tional force that must act on the particle along stable trajectories 
can be determined from Eq. (26) and Eq. (27). Note that this force 
depends on the velocity and the form of the trajectory, which is 
typical for the motion of a body in a continuous medium. 
Conclusion. Any description of the motion of an elementary parti-
cle using the laws of deterministic classical mechanics must in-
clude forces that are exerted on the particle on quantum orbits by 
a medium (ether).  

4. Electron in the Field of an Atomic Nucleus 

Using the above approach, let us analyze an electron in the 
Coulomb field in a hydrogen atom, taking the nucleus to be at 
rest. The time-independent Schrödinger equation has the form 
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    
2
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r r

m r
o


   

   
 

    (29) 

where 
0

2 4/= e πε  , and e  is the charge of the electron. Let us 

show that the well known solution to Eq. (29) can be obtained 
purely by mathematics without relying on any of the postulates 
of conventional quantum mechanics. 

Recall that the  Laplace operator in spherical coordinates has 
the form 

 
2

2
2 2 2 2 2
1 1 1

sin
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r
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
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We look for a solution of Eq. (29) of the form 

  ( , , ) ( ) ( , )r R r Y      . 

First note that Eq. (29) can be rewritten as: 
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Note also that the variables are now separate:  the left hand 
side of the equation contains only r  and the right hand side con-
tains only   and  . Eq (31) must hold for any r ,  and . This 
is possible only if the left and right sides of the equation are both 
equal to the same constant C. Therefore, Eq. (31) can be replaced 
by the following two equations: 
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First, we will look for finite and single-valued solutions of the 
equation (33). The condition of being single-valued can be ex-
pressed as 

 ( , 2 ) ( , )Y Y       (34) 

Again we solve equation (33) by separation of variables. Let   
( , ) ( ) ( )Y       .  Then (33) can be written as 
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where k  is some constant. The last equation is decomposes into 
two: 
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The second equation above yields the immediate solution: 

1 exp( )k C ik   . To satisfy the condition of the solution’s be-

ing single-valued (35), k  must take the integer values 
0, 1, 2,...k      In the equation (36) let us make the substitution 

cosx  .  After the substitution, denote function   by y . After 

the changes, (36) takes the form: 
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 (37) 

The theory of differential equations shows that the only solu-
tions of (37) that are finite in the interval [-1,+1] are the adjoint 
Legendre polynomials 
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k
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d
P x x P x
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l
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Since the  1 thl + derivative of a polynomial of degree l is ze-

ro, the functions (38) are non zero only for k l . These 

polbynomials are eigenfunctions of the differential equation (37) 
and 

 2
2

( 1)
mC

l l 


 (39) 

are its eigenvalues. Thus from this very brief derivation we see 
that the quantization of angular momentum is obtained strictly 
mathematically and does not require the introduction of any ad-
ditional axioms (other than finiteness of the solution). It is im-
portant to emphasize here that Planck’s reduced constant  ap-
pears in all solutions only due to substitution (15). 

Substituting (39) into the Eq. (32) yields 

 2 2
2

2
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R m
r r R l l R

r r r
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 (40) 

The expressions , ( )n lR r  for the radial part  ψ r, ,φ  can be 

obtained by taking into account the fact that ( )R r  is bounded at 

infinity. The expressions for the eigenvalues turn out to be the 
well-known formulas obtained by Bohr for a hydrogen atom. 
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Thus, in the case of a hydrogen atom Schrödinger function 
has the form: 
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Given (18) and (42), the phase of the wave function takes the 

form n nt V t k
 
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. 

Given the above expression and Eq. (26) the velocity vector of 
the electron   equals to 
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k
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m
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k
v
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
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Thus, the electron moves along a circle lying in the xy plane 
with its center on the z-axis.  Using the notation sinr   , v


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k

v
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
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. This expression is similar to the expres-



 Sotina: Derivation of Schrödinger Equation Vol. 9 576 

sion for the velocity of particles in a case of the potential circular 

motion of fluid with circulation 
k

m



. The net force that pro-

vides centripetal acceleration equals 
2 2

3
k

m


.   

Let us consider the solution of the Schrödinger equation when 
the speed of a particle is zero, for example 

100
const    

0
exp( / )r r .  In this case the Coulomb force of attraction is bal-

anced by a force of repulsion exerted on the particle by a struc-
ture formed in ether.  

5. V.Kotel’nikov’s Model of Nonrelativistic 
Quantum Mechanics 

Naturally, a question arises: how well does this interpretation 
of the Schrödinger equation agree with the probabilistic interpre-
tation? 

Recently a work by the well known Russian physicist V.A. 
Kotel’nikov was published [2], which is also devoted to the 
search for hidden variables. In his study V.A. Kotel’nikov as a 
starting point uses the Shrödinger equation and probabilistic 
interpretation of the function. V.A. Kotel’nikov raised a ques-
tion: how can an elementary particle move according to the laws 
of classical mechanics if its probabilistic behavior is determined 
by the Schrödinger equation. As result of his mathematical deri-
vations, he concluded that the particle should move under the 
action of two forces: a classical force, defined by the potential U 
and a “ quantum” force as well. He suggested that a field, which 
he named the “quasifield”, exists that accompanies the particle 
and produces the “quantum” forces. From Katel’nikov’s stand-
point, the “quasifield” is some type of a scalar field which can be 
modeled as gas or compressible liquid. It is important to note, 
that the formulas Katel’nikov obtained for the additional “quan-
tum” force and for the particle’s velocity coincides completely 
with the corresponding formulas (26) and (29) derived above. 
This means that our reasoning is in agreement with probabilistic 
results and the interpretation of  function, and therefore also 
with experiments. 

Below we present the derivations of these formulas done by 
Katel’nikov. A small number of copies of his work, not complet-
ed because of his death, were published in Russia. Three chapters 
were published separately in the English version [3] of the 
Russion journal Physics-Uspekhi (Advances in Physical Sciences).   

As is known, the basic assertion of nonrelativistic quantum 
mechanics is that the state of a particle at a given moment in  
time t  is fully described  by a wave function 

  ( ) expr A i 


 (44) 

where ( , )A r t


and ( , )r t


are real.  The function ( , )A r t


 deter-

mines the probability that the particle at some instant of time 
t resides within a small volume dq , i.e. 

 2( , )dP A r t dq


 (45) 

and ( , )r t


determines the dynamic state of the particle. 

Knowing  at the initial moment of time, and the potential 
energy associated with the external fields ( , )U r t


, one can find 

( , )r t


 

for other moments in time using the  Schrödinger equation. 

     
2( , )

, ( ) ,
2

r t
i r t U r r t

t m
  

   


     (16*) 

Let us try to construct a model that corresponds to the above 
basic statement of quantum mechanics and hence to the experi-
mental evidence but which also imply a certain trajectory of the 
particle, as is the case in macroscopic mechanics. 

Suppose that at some moment of time t  the particle is at a 
point with position vector  r


and has velocity ( , )v r t

 
. Let us find 

the probability that during a time interval ( , )t t dt  the particle 

will cross a small area ds
  .  During the time interval dt , the parti-

cle moves by ( , )v r t dt
 

. It will cross the area ds


if at some instant 

of time t it was at a distance ( , ) (0 1)v r t dt  
 

 from one of 

the points in this area or, in other words, if at time t it was within 
a volume dq v ds dt 

 
 adjacent to the area ds

 . According to formu-

la (44), the probability of this event is 2
dsdP A v ds dt 

 
. For 

0v ds 
 

, the particle will cross the area ds


 in the opposite direc-

tion. 
Let us choose some volume q  bounded by a closed surface S . 

The probability that the particle will escape from this volume q , 

i.e., will cross the surface S  within the time interval ( , )t t dt  is, 

according to the Ostrogradsky-Gauss theorem, given by 

 2 2( , ) ( )
q

S

P dt A v r t ds dt A v dq     
   

 (46) 

The probability that at the moment of time t the particle re-
sides within the volume q  is, according to (45), equal to 

 2( , )t

q

P A r t dq 


 

The probability that the particle will stay within volume q  at 

time t dt  can be expressed as 

 2 2( ) ( 2 )

q q

t dt
A A

P A dt dq A A dt dq
t t

 
   

    (47) 

Here, we omitted the term with 2( )dt  as an infinitesimal of 

higher order of magnitude. 
Evidently, the event “the particle is within volume q  at some 

instant of time t “ will be necessarily followed by either the event 
“the particle stays within volume q  at some instant of time 

t dt “ or the event “the particle leaves domain q within the time 

interval ( , )t t dt “.  Therefore, one finds that 

 t t dtP P P     or t dt tP P P     

From this equality it follows that 

 
2

2( )

q q

A
dq A v dq

t


   
 


 (48) 

and, since this equality should be valid for any q , one has  
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2

2( )
A

A v
t


 




 (49) 

Now, let us find the value of 2/A t   according to the 

Schrödinger equation . We substitute ( , )r t


 from formula (44) 

into Eq. (16*). Then we obtain the result 

2
2

( )

2 ( )( ) ( ) exp( ) exp( )
2

A
i iA

t t

A i A iA A i Ua i
m



    

 
 

 

           




 (50) 

Cancelling both sides of the above equation by  exp i  and 

setting the imaginary parts equal, we find that 

 
2

2 ( )( )
2

A
A A A

t m
 

       


 (51) 

Furthermore, multiplying both sides by 2A, after some algebraic 
transformations we obtain 

 
2 2

22 4 ( )( ) 2
2

A A
A A A A

t t m
            


 (52) 

or 
2

2( )
A

A
t m


   




. The latter equation coincides with Eq. 

(49) if we assume that 

 ( , ) ( , )v r t r t
m

 
 

 (53) 

Hence, if at some moment of time t a particle is at a point with 
position vector r


, its velocity should correspond to equation (53) 

in order that the Schrodinger equation and relation (45) be satis-
fied. 

Let us now find the forces that should act on the particle to 
provide these velocities. Note that setting the real parts in Eq. 
(50) equal and canceling  expA i , we obtain 

 
2

2( )
2

A
U

t m A



  

        

  (54) 

Let us find the acceleration of the particle from the velocities 
(53). If a particle moves along a certain trajectory, so that 

( , )v r t
 

depends on r


 and t, its acceleration and velocity are 

known to be related by the equation  

 2( , ) 1
( ) ( )

2
dv r t v

v v v
dt t


     



   
 (55) 

(as the total derivative of velocity is calculated in hydrodynam-
ics) 

According to Eq.(53), the particle velocity is a gradient of 
some function; therefore, the cross product v


 equals to zero 

and hence, one has 

 2( , ) 1
( )

2
dv r t v

v
dt t


  



  
 (56) 

If we assume that the particle motion satisfies Newton’s law, 
then the existence of acceleration requires a force acting on the 
particle: 

 2( , )
( )

2
d v r t vm

F m v m
dt t


   



  
 (57) 

or, taking into account formula (53), we obtain 

 
2 2

2 2
2 2 ( ) ( )

2
mF

t m tm


  

   
             

     (58) 

The expression on the right-hand side of Eq. (58) can also be 
obtained from relation (54). Indeed, calculating the gradients of 
the left-hand and right-hand parts of Eq. (54), we arrive at 

 
2 2

2( )
2 2

A
U

m t m A



 

     


   (59) 

Taking this into account, we can rewrite expression for the 
force (58) as 

 
2 ( , )

2 q
dv r tA

F U F U m
m A dt


     

  
 (60) 

Here, qF


is an additional force that should act on the particle 

to provide its motion according to the Schrödinger equation and 
hence there is an agreement with the experimental results. This 
force is a conservative force and is determined by the modulus of 
the wave function ( , )A r t


. 

As one can see the formulas for the particle’s velocity (53) and 
for qF


 Eq. (60) coincides completely with Eqs. (26) and (27) that 

was obtained above using the approach of the classical mechan-
ics. Note, that these equations are also valid in the case of the 
time-dependent Schrödinger equation 

6. De Broglie’s “Law of Phase Harmony” and 
its Physical Interpretation 

Now we go back to the complete integral of the Jacobi equa-
tion (5).  From the theory of differential equations, the geometric 
representation of the complete integral of a differential equation 
is a family of integral surfaces.  Consider one integral surface.  
Through each point of this surface there is a unique characteristic 
line which is contained within the surface.  The projection of this 
line onto a hyperplane describes a particular trajectory of a sys-
tem.  By giving various transformations  S  , we obtain 

different functions  bound to the given trajectory.  In this way 
the transition from Hamilton’s equations to the Jacobi equation 
provides additional ways for describing the system behavior.  If 
there exists some physical characteristic of the system, which 
from on the one hand side changes continuously along each tra-
jectory, and on the other hand can be uniquely and continuously 
extended to the surrounding space, then the attempt can be made 
to describe such a variable characteristic mathematically by find-
ing an appropriate  S  .Note once again that substitution 

(15) is the one that allowed to extract from all possible trajectories 
those that satisfy Schrödinger equation, moreover it is due to this 
substitution that all solutions of the Schrödinger equation contain 
 . The latter substitution was found empirically by Schrödinger 
as the one which yields the Rydberg-Ritz formula for the spec-
trum of the hydrogen atom. 
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The substitution (15) allows one to associate a function 

   exp i t x    with each of the particle’s trajectories. As it 

follows from the theory of differential equations for any fixed 
moment of time 0t t  the surface. 

    0 , exp constoi t
t x x

    
 

 (61) 

is perpendicular to the trajectories. This mathematical fact is the 
basis for the de Broglie-Bohm pilot-wave theory. De Broglie as-
sumed that every elementary particle possesses an internal oscil-
latory process, although his theory does not address the nature of 
this process.  He suggested that an oscillation with exactly the 
same frequency is also induced at each point of space surround-
ing the particle.  Thus de Broglie introduces two objects: a parti-
cle and an accompanying stationary wave.  Considering these 
objects separately and taking (61) into consideration he came to 
his famous “law of phase harmony”: the phase of the   function 
associated with the moving particle must always be in accord 
with the phase of the stationary wave at the location of the parti-
cle. 

The “stationary wave”, however, requires a medium, pre-
sumably the “physical vacuum”, in which to propagate.  But the 
“vacuum” having non uniform energy density and pressure does 
not agree with the theory of relativity.  De Broglie and his fol-
lowers attempted to combine the pilot-wave theory and special 
relative, but they did not succeed. 

As stated above the main goal of this paper is the search for 
“hidden variables”.  It was previously shown, that the Schrö-
dinger equation can be interpreted as a condition of stability of a 
mechanical system if the ether is taken into consideration. In this 
case, structures can form in the ether which stabilize the motion 
of a particle in external fields. An example of a structure in sim-
ple liquids is a vortex. In superfluid He-3 structures like homo-
geneous precessing domain are observed, where the spins of the 
fluid particles precess with the same frequency and phase. 

With the assumption that the ether has properties like a su-
perfluid, a new interpretation of the “law of phase harmony” can 
be given: a term /   in the expression of the non-stationary 
component of the wave function phase represents on the one 
hand the precession frequency of spin of the electron, and on the 
other hand is a frequency of coherent precession of ether parti-
cles’. (Note that torque and energy have the same units of meas-
ure in physics.) This explains why the natural atomic frequencies 
change if a spin of electron is subjected to an external magnetic 
field. 

The role of physics is to establish correspondence between 
mathematical properties of function   and physical quantities, 
i.e. to give it proper physical interpretation.  At present the prob-
abilistic interpretation of function   is the most common one.  
However, the problems of the probabilistic interpretation dis-
cussed in part 1, proposed “hidden variables” as an alternative 
interpretation of the Schrödinger equation.  
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