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1 Abstract

Using a new isothermal gravity equilibrium theory, the dust universe model
together with a cosmological Schrödinger equation are applied to solving
the problem of generating mass spectra. The masses generated can range
from sub fundamental particle rest masses to masses greater than that of
the universe. The ranges all depend on a quantum integer number l, related
to the isotropic index n, which can lie between unity and infinity. One such
mass obtained is given by l = 8 and can represent a small galaxy. The rota-
tion curves for stars, in motion, within this galaxy are examined for flatness
and found to have gradients of approximately, −10−23. Examination of the
Newtonian gravitation potential associated with these mass quanta reveals
that it is, consistent with the dust universe model, based on Einstein’s cos-
mological constant, Λ, rather than on Newton’s gravitational constant, G,
as this last constant disappears by fractional cancellation within the theory
structure. Thus this quantization of gravity is based on the cosmologi-
cal constant. There is found within this theory structure a simulation of
negative mass from suitably geometrically orientated positive mass. It is
suggested that this feature could supply an explanation for the character of
dark energy mass as being due to suitably orientated positive mass. How-
ever, this last point needs further study. This paper is a corrected version
involving an added section (8) explaining the corrections.
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2 Introduction

This paper is a follow up of papers, [48], [49], [50] and [52] of similar titles on
the problem of formulating the equation that describes the equilibrium of a
gaseous material in a self gravitational equilibrium condition in the galaxy
modelling context, [47], see also, appendix 2 of ([35]). Here I shall examine,
in more detail, the quantum set of dark matter density distributions %(r, n)
which depend on the radial distance r and the isotropic quantum state index
n(l) = 2l/(2l − 1) rational number which itself depends on the quantum
integer numbers l : 1.2.3...∞. The, mass per unit volume, density solutions
of the new isothermal gravitational equilibrium equation as functions of the
usual dimensioned radius parameter, r, and of the isotropic index, n, can
be written as,

%′(r, n) =

(
−2K

πG(1− n)2

) n
n−1

r
2n

1−n , (2.1)

It is easy to show that the function (2.1) can be used as the space dependent
part of a steady state solution to a specific Schrödinger equation by the fol-
lowing steps. Firstly, given a function, E(n), for a set of energies dependent
on the parameter n, we note that the kinetic energy term of the Schrödinger
equation (2.8) will have the form, (2.3), when Ψ1(r, t) is assumed to have
the product form,

Ψ1(r, t) = e−
E(n)it

~ %
1/2
′ (r, n)

= e−
E(n)it

~

(
−2K

πG(1− n)2

) n
2(n−1)

r
n

1−n (2.2)
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− ~2

2m
∇2Ψ1(r, t) = − ~2

2m

∂(r2∂Ψ1(r, t))

r2∂r2
= −

~2n%
1/2
′ (r, n) exp(−E(n)it

~ )

2mr2(1− n)2

(2.3)

i~
∂

∂t
Ψ1(r, t) = E(n)Ψ1(r, t) = E(n) exp(−E(n)it/~)%

1/2
′ (r, n)

(2.4)

The second equation above gives the result of the quantum energy operator
acting on Ψ1(r, t). Thus if we denote and define an external potential V (r)
by

V (r)Ψ1(r, t) = E(n)Ψ1(r, t) +
~2

2m
∇2Ψ1(r, t) (2.5)

=

(
E(n) +

~2n

2mr2(1− n)2

)
Ψ1(r, t) (2.6)

V (r) = E(n) +
~2n

2mr2(1− n)2
, (2.7)

we find looking at equations (2.3) → (2.7) that the square roots of solu-
tions of the new isothermal equilibrium equation are also solutions of the
Schrödinger equation,

i~
∂

∂t
Ψ1(r, t) = − ~2

2m
∇2Ψ1(r, t) + V (r)Ψ1(r, t), (2.8)

provided the an external potential contribution is defined by (2.7). It fol-
lows from this that the mass densities of the new isothermal equilibrium
equations, apart from a multiplicative dimensioned constant, coincide with
the probability densities of the Schrödinger equation. The formula at lines
(2.5) and (2.6) has a well known significance in the quantum regime. It rep-
resents as shown at (2.10) the statement that Ψ1(r, t) is an eigen-function
of the operator version of the external potential,

V̂ (r) = i~
∂

∂t
+

~2

2m
∇2 (2.9)

V̂ (r)Ψ1(r, t)) = V (r)Ψ1(r, t) (2.10)

V (r) = E(n) +
~2n

2mr2(1− n)2
, (2.11)
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and in this case the eigen-values of this operator are given by the func-
tion V (r) at (2.11), these actual values being determined by whatever the
appropriate value of the isotropic index n happens to be. Thus more ap-
propriately, we should make the notation changes at (2.12) and (2.13) with
the consequent change in the schrödinger equation (2.8) recorded at (2.14).

Ψ1(r, t) → Ψ1(r, t, n) (2.12)

V (r) → V (r, n) (2.13)

i~
∂

∂t
Ψ1(r, t, n) = − ~2

2m
∇2Ψ1(r, t, n) + V (r, n)Ψ1(r, t, n). (2.14)

Thus we have, perhaps, the unusual quantum situation, that what might be
called an augmented Laplace operator V̂ (r), (2.9), has steady state eigen-
functions which are solutions of an eigen-Schrödinger equation (2.14). The
solutions Ψ1(r, t, n) of the Schrödinger equation (2.14) can be used to give
a space variable character to the spatially constant but epoch time variable
solutions of the basic quantum solution, ρ1/2(t), of the dust universe model
just by multiplication as below

Ψ(r, t) = Ψ1(r, t, n)Ψnl,ρ(t), (2.15)

where

Ψnl,ρ(t) = ρ1/2(t) = A1/2 sinh−1(3ct/(2RΛ)) (2.16)

A = (3/(8πG))(c/RΛ)2 (2.17)

RΛ = (3/Λ)1/2. (2.18)

and

i~∂Ψnl,ρ(t)

∂t
= VC(t)Ψnl,ρ(t) (2.19)

VC(t) = −(3i~/2)H(t) (2.20)

H(t) = (c/RΛ) coth(3ct/(2RΛ)) (2.21)

ρ(t) = (3/(8πG))(c/(RΛ)2 sinh−2(3ct/(2RΛ)). (2.22)

H(t) above is the epoch time variable Hubble constant and ρ(t) is the epoch
time variable substratum density both from the dust universe model. The
objective of this work so far is to establish that the wave function Ψ(r, t)
defined at (2.15) is the solution of a cosmological Schrödinger equation

4



which might be described as a hybrid structure giving a theoretical mixture
of general relativity and quantum theory from a new isothermal gas gravity
self equilibrium theory. The cosmological Schrödinger equation takes the
form,

i~∂Ψ(r, t)

∂t
= − ~2

2m
∇2Ψ(r, t) + V (r, t)Ψ(r, t) + VC(t)Ψ(r, t), (2.23)

where VC(t), the feed back potential, is given by equation (2.20). There
is a freedom to choose the numerical multiplier both in magnitude and di-
mensionality that goes along with the solutions of the Schrödinger equation
(2.14) because of its linearity. This multiplier will be determined by the
way the solutions are to be used. The intention here is to use these solu-
tions to modulate with space variability the otherwise time only dependent
substratum quantum solutions from general relativity. Because these wave
functions are not complex the mass density solutions from the quantum
Hermitian product is just the square of the wave function for the substra-
tum from general relativity, ρ(t) = Ψnl,ρ(t)Ψ

∗
nl,ρ(t) → Ψ2

nl,ρ(t). This squared
quantity has the built in dimensionality of mass per unit volume. Thus if
the density solutions of the cosmological Schrodinger equation is to have
the dimensions of mass per unit volume then the wave function Ψ1(r, t, n)
used as a multiplier at (2.15) needs to be taken, initially at least, as dimen-
sionless. Recalling the definition of this wave function at (2.2)

Ψ1(r, t) = e−
E(n)it

~

(
−2K

πG(1− n)2

) n
2(n−1)

r
n

1−n (2.24)

it can be seen that a dimensionless version of this is easily obtained if it is
written in the form

Ψ1(r, t) = e−
E(n)it

~

(
−2a

π(1− n)2

) n
2(n−1)

(r/r0)
n

1−n , (2.25)

where a is a dimensionless real number numerically equal to K/G is used
to replaces the dimensioned quantity, K/G, and r0 is a dimensioned length
both determined by the physical context of application. Thus finally we
can write out in full the solution for the cosmological Schrödinger equation
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(2.23) associated with the isotropic index n as at (2.27) etc

Ψ(r, t, n) = Ψ1(r, t, n)Ψnl,ρ(t) (2.26)

= e−
E(n)it

~

(
−2a

π(1− n)2

) n
2(n−1)

(r/r0)
n

1−n Ψnl,ρ(t)

(2.27)

Ψnl,ρ(t) = ρ1/2(t) = A1/2 sinh−1(3ct/(2RΛ)) (2.28)

A =

(
3

8πG

)(
c

RΛ

)2

(2.29)

RΛ = (3/Λ)1/2. (2.30)

We should note that the mass density per unit volume solutions of the
cosmological schrödinger equation are given by the usual Hermitian scalar
product,

ρS(r, t, n) = Ψ(r, t, n)Ψ†(r, t, n) (2.31)

=

(
−2a

π(1− n)2

) n
n−1

(r/r0)
2n

1−n Ψ2
nl,ρ(t). (2.32)

From here on in this paper, the work will be carried through in terms of
the integer quantization parameter, l, rather than in terms of the isotropic
index, n = 2l/(2l−1). The quantum number l will be placed as a subscript
so that we have

ρS,l(r, t) = ρS(r, t, n(l)), n(l) =
2l

2l − 1
, Ψ2

nl,ρ(t) = ρ(t) (2.33)

ρS,l(r, t) =

(
2a(2l − 1)2

π

)2l

(r/r0)
−4lΨ2

nl,ρ(t) (2.34)

= ρ1,l(r)ρ(t) = ρb,l(r)(ρ(t)/ρ(tb)) (2.35)

ρ1,l(r) =

(
2a(2l − 1)2

π

)2l

(r/r0)
−4l (2.36)

ρb,l(r) = ρ(tb)

(
2a(2l − 1)2

π

)2l

(r/r0)
−4l (2.37)

= σl(r0)r
−4l, say, with (2.38)

σl(r0) = ρ(tb)

(
2a(2l − 1)2

π

)2l

r4l
0 . (2.39)
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The formula at (2.34) above gives the density solutions, ρS,l(r, t), of the
cosmological schrödinger in terms of the integer quantization parameter l
which is now placed as a subscript on the density.

The introduction of the constant ρ(tb) at that line is self cancelling so
that the solution of the cosmological Schrödinger is not changed but in ef-
fect the two distinct differential equations are renormalized, if from now
on, ρb,l(r) is taken to be a density solution of the differential equation for
Ψ1(r, t, n). The introduction of the self cancelling function at line (2.35)
is important for the physical-philosophical interpretation of the solutions
of the cosmological Schrödinger equation. By construction the solutions of
this equation take the product form (2.35), one factor of this product is
pure quantum mechanics and the other is pure cosmology from the dust
universe model. However, as we have seen, without the ρ(tb), the solutions
of the quantum part Ψl,1(r) have to be dimensionless and so the Hermitian
product form cannot represent a mass density. It can however, be regarded
as a spatial modulation of the cosmological factor. My suggestion is that
the product with or without the ρ(tb) factor represents two points of obser-
vational view. With the ρ(tb) the density solutions, ρb,l(r), of the Ψ1(r, t, n)
equation represent the view of an observer within and part of its quantum
system with cosmology somewhat sidelined. Without the ρ(tb) , the cos-
mological Schrödinger equation solutions represent the view of a general
observer not particularly interested in any specific galaxy but being con-
scious that regions within galactic domains are spatially different from the
substratum. With this philosophical slant on the meaning of the product
solutions of the cosmological Schrödinger equation, the with ρ(tb) can be
explained as follows. It is usually assumed that galaxies have been around
for a very long time. Often it is suggested that the milky way is nearly
as old as the universe itself. This seems to be a very reasonable idea and
along with this idea it seems likely that a galaxy is a large amount of mass
conserved within a not expanding volume. Thus galaxies seem to be objects
of almost constant mass density over very large epoch times. Obviously a
region of astro-space which accommodates a galaxy is greatly distinguished
by its mass density from the substratum mass density in which it swims.
Now although mass density may be conserved, if this mass density is mean
or average mass density in the region of occupation, great changes or evo-
lution of the local distribution of this mass within the galactic region is
not precluded from taking place over time. We can envisage the beginning
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of a new galaxy as a birth process taking place at a definite epoch time,
tb, by a quantum process in which a spherical region of the substratum at
the time tb, when the substratum density is ρ(tb), stops expanding with
the substratum by a spatially extended change of state. A region fractures
from the substratum at time tb to retain the mass and volume at its birth
to follow its own evolution under the cyclic steady state factor (2.27). Thus
for all following times the actual internal mass mean density will retain its
birth value ρ(tb) whilst the environment substratum mass density outside
the galactic region will at time t have assumed the much reduced evolved
value ρ(t) for t > tb. Thus the birth of a galaxy can be regarded as a
random centred and time determined quantum change of state process that
effects spherical volumes of the substratum which then evolves scale wise
independently of their environment except for their mass centroids which
will move with the environment. This is what the wave function Ψ1(r, t, n)
describes. It is convenient at this point to introduce a useful conceptual
radius associated with the birth of a galaxy. The structure is such that we
know two physical characteristics involved with a galactic birth. Its mass
Ml can be found from the theory given its quantum state l and its uniform
mass density ρ(tb) equal to the substratum mass density at the moment of
birth given by the assumed time of birth tb. Thus we can define a conceptual

spherical volume Vb = Ml

ρ(tb)
=

4πr3
b

3
and the conceptual radius rb associated

with the birth process. I shall interpret this conceptual radius as the radius
of a sphere of visible material that suddenly appears at time tb although it is
not likely that there will have been any observers to see the creation event.
However, this is not mass creation from nothing, it is a visible change of
state of the pre-existing substratum mass. Thus I shall call rb the visibility
radius of the galaxy and as previously discussed this is a feature that stays
with the galaxy for very many following years. This radius is theoretically
important because the object that it represents is mathematically an infi-
nitely radially extended material sphere. This can be the recognition of the
recently substantiated conclusion that with galaxies what you see is only
part of the story.

The n in the subscript nl above at (2.33) which is short for non-linear
should not be confused with the isotropic index n. The version at (2.35)
gives the density solution of the cosmological schrödinger in terms of the
corresponding density solution of the related schrödinger equation (2.14)
with (2.38) and (2.39) giving a convenient abbreviation for this function.
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So far in this paper, the argument has been developed on the premiss that
eigen-values for steady state energies for the mass density distributions (2.1)
are given in the form of the function E(n) of the isotropic index n. In
the next section, I shall show that there is a natural function within the
quantized isothermal theory for the dark matter galaxy halos that fits this
bill.

3 Steady State Dark Matter Energies, E(n)

In reference, [50], I showed that in general relativity the total gravitationally
effective mass within a sphere of radius r for a spherically extended source
in an isotropic equilibrium state can be written as,

MGR(r) = M+(r) + MP (r)−MΛ(r) =

∫ r

rε

%g(r
′)dr′ + Mε. (3.1)

The actual mass as opposed to effective mass within the same sphere is

Mgr(r) = M+(r) + MP (r) + MΛ(r) (3.2)

because all masses and mass densities are to be taken as positive. To avoid
confusion, I am using the lower case subscript gr for actual mass. The
effective mass MGR(r) expression above is a convenient abbreviation for

MGR(r) = (G+M+(r) + G+MP (r) + G−MΛ)/G (3.3)

G+ = +G (3.4)

G− = −G. (3.5)

The Newtonian gravitational potential at radius r from the centre of a dis-
tribution such as (2.34) above is given by

VG(r) =
Mgr(r)G

r
. (3.6)

Here, as indicated by lower case subscript gr, the mass should be the actual
mass. In earlier versions of this paper, I mistakenly used the effective mass.
This change has the consequence that further changes have been made in
the following text. This includes the addition of a section (8) in this version
of this paper entitled Explanation of Corrections in which my mistake is
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explained and is implications are discussed. If we are to use the potential
(3.6) then M+(r) for example needs to be calculated from the formula,

M+(r) =

∫ r

0

ρb,l(r, t)4πr2dr. (3.7)

= σl(r0)

∫ r

0

r−4l4πr2dr (3.8)

= σl(r0)

∫ r

0

r2−4l4πdr (3.9)

= 4πσl(r0)

[
r3−4l

3− 4l

]r

0

. (3.10)

The 4πr2 factor in the first two integrals above converts the mass density per
unit volume to mass per unit radius. The integer quantization parameter
l can have the numerical values, 1, 2, 3, 4 . . . . . .∞. It follows that 3 − 4l is
always negative.

3− 4l < 0 ∀l. (3.11)

Thus the upper value for r in (3.10) can be ∞ when r3−4l → 0 but at the
lower limit when r → 0, the lower value of r3−4l diverges to ∞. It follows
that the raw density functions cannot comfortably be used in calculations.
In fact, nature comes to the rescue here with the factual existence of galactic
cores. What seems to me to be the simplest assumption is to replace the
densities ρb,l(r) with a more physical realistic densities, ρb,l,ε(r), defined as
follows

ρb,l(r) → ρb,l,ε(r) = ρb,l(r) r ≥ rε (3.12)

ρb,l(r) → ρb,l,ε(r) = ρb,l(rε) r < rε (3.13)

lim
rε→0

ρb,l,ε(r) = ρb,l(r) ∀l (3.14)

with the region within the radius rε being regarded as the galactic core and
having the constant density ρb,l(rε). The last equation above shows that
this modification is reversible by taking the limit rε → 0. Thus for practical
calculational purposes we can work with the always finite densities ρ1,l,ε(r)
and if needs be take the limit rε → 0 afterwards. However, I shall usually
drop the ε subscript on these densities and only restore it, if it is really
needed in context. Let us now return to calculating the effective mass
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within a sphere of radius r using the finite everywhere densities. Firstly
consider the positively gravitating mass excluding the pressure generated
part MP (r) calculated above,

M+(r) =

∫ r

0

ρb,l,ε(r, t)4πr2dr (3.15)

= σl(r0)

∫ rε

0

rε
−4l4πr2dr + σl(r0)

∫ r

rε

r−4l4πr2dr (3.16)

= σl(r0)

∫ rε

0

r−4l
ε r24πdr + σl(r0)

∫ r

rε

r−4l4πr2dr (3.17)

= σl(r0)r
−4l
ε

[
r3

3

]rε

0

4π + 4πσl(r0)

[
r3−4l

3− 4l

]r

rε

(3.18)

= 4πσl(r0)

(
r−4l
ε

r3
ε

3
+

r3−4l

3− 4l
− r3−4l

ε

3− 4l

)
(3.19)

= 4πr4l
0 ρ(tb)

(
2a(2l − 1)2

π

)2l(
r−4l
ε

r3
ε

3
+

r3−4l

3− 4l
− r3−4l

ε

3− 4l

)
= 4πr4l

0 ρ(tb)

(
2a(2l − 1)2

π

)2l(
r3−4l

3− 4l
− 4lr3−4l

ε

3(3− 4l)

)
(3.20)

= Al

(
4lr3−4l

ε

3
− r3−4l

)
, say (3.21)

Al =
4πr4l

0 ρ(tb)

4l − 3

(
2a(2l − 1)2

π

)2l

. (3.22)

According to construction here the mass of the core Mε should be given by
r = rε in equation (3.15) and inspection of (3.19) shows that the core mass
is

Mε = M+(rε) = 4πσl(r0)
r3−4l
ε

3
= Al

r3−4l
ε

3
. (3.23)
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Using s(t) to denote the function sinh−2(3ct/(2RΛ)), the total mass of this
type is

M+(∞) = 4πr4l
0 ρ(tb)

(
2a(2l − 1)2

π

)2l(
4lr3−4l

ε

3(4l − 3)

)
= Al

(
4lr3−4l

ε

3

)
(3.24)

=
12πr4l

0 s(tb)

8πG

(
c

RΛ

)2(
2a(2l − 1)2

π

)2l(
4lr3−4l

ε

3(4l − 3)

)
. (3.25)

Thus the ratio of total mass of this type to core mass is

M+(∞)

M+(rε)
=

4l

4l − 3
. (3.26)

Formula (3.25) can be regarded a giving the total mass Mg(rε, r0, l) =
M+(∞) of this type of a galaxy represented as having values for its para-
meters given by (rε, r0), if additionally it is in the gravitational equilibrium
quantum state given by the integer, l. Other parameters used in this formula
have approximate known numerical values. The parameter a can be taken
to be just the non dimensioned numerical value of the dimensioned ratio
R/G from isotropic gravitation theory. Let us now consider the positively
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gravitation mass arising from Einstein’s pressure term

MP (r) =

∫ r

0

3P (r′)4πr′2

c2
dr′ =

∫ r

0

3K′%
4l−1
2l (r′)4πr′2dr′ (3.27)

=

∫ r

0

3K′(ρ1,l(r
′))

4l−1
2l 4πr′2dr′

=

∫ r

0

3K′

((
2a(2l − 1)2

π

)2l(
r′

r0

)−4l
) 4l−1

2l

4πr′2dr′ (3.28)

=
12πK′

r2−8l
0

(
2a(2l − 1)2

π

)4l−1 ∫ r

0

(r′)
4−8l

dr′ (3.29)

=
12πK′

r2−8l
0

(
2a(2l − 1)2

π

)4l−1(
r2−8l
ε r3

ε

3
+

r5−8l

5− 8l
− r5−8l

ε

5− 8l

)
=

12πK′

r2−8l
0 (8l − 5)

(
2a(2l − 1)2

π

)4l−1(
r5−8l
ε (8l − 2)

3
− r5−8l

)
= Bl

(
r5−8l
ε (8l − 2)

3
− r5−8l

)
, say (3.30)

Bl =
12πK′r

8l−2
0

(8l − 5)

(
2a(2l − 1)2

π

)4l−1

(3.31)

P (r) = c2K′ρ1,l,ε(r)
4l−1
2l . (3.32)

The last equation above is the Lane-Emden type polytropic gas equation
used above in a form most suitable for use with this work in terms of the
quantum number l. K′ is a constant with dimensions of mass per unit

volume and ρ1,l,ε(r)
4l−1
2l is the dimensionless mass density defined at (2.35)

and (2.36) and core modified, see (3.12) etc. The negatively gravitating
mass MΛ(r) within a sphere of radius r and volume 4πr3/3 is the easiest
term to obtain. It is

MΛ(r) =
4πr3

3
(3/(4πG))(c/RΛ)2 =

c2Λr3

3G
(3.33)

= Clr
3, say (3.34)

Cl =
c2Λ

3G
. (3.35)

13



That is to say MΛ(r) is the volume times twice Einstein’s dark energy
density term,

(3/(8πG))(c/RΛ)2 =
c2Λ

8πG
. (3.36)

Thus the total gravitationally effective mass within a spherical volume is
given by the sum of the three components M+, MP and −MΛ,

MGR(r) = M+(r) + MP (r)−MΛ(r) (3.37)

= Al

(
4lr3−4l

ε

3
− r3−4l

)
+ Bl

(
r5−8l
ε (8l − 2)

3
− r5−8l

)
− Clr

3

(3.38)

Al(r0) =
4πr4l

0 ρ(tb)

4l − 3

(
2a(2l − 1)2

π

)2l

=
r4l
0 s(tb)c

2Λ

2G(4l − 3)

(
2a(2l − 1)2

π

)2l

(3.39)

Bl(r0) =
12πK′r

8l−2
0

(8l − 5)

(
2a(2l − 1)2

π

)4l−1

=
3r8l−2

0 s(tb)c
2Λ

2G(8l − 5)

(
2a(2l − 1)2

π

)4l−1

(3.40)

Cl =
c2Λ

3G
. (3.41)

From (3.38), we can find the total core mass is given by,

MGR(rε) = Al

(
4lr3−4l

ε

3
− r3−4l

ε

)
+ Bl

(
r5−8l
ε (8l − 2)

3
− r5−8l

ε

)
− Clr

3
ε

= Al

(
4l

3
− 1

)
r3−4l
ε + Bl

(
(8l − 2)

3
− 1

)
r5−8l
ε − Clr

3
ε (3.42)

= Al

(
4l − 3

3

)
r3−4l
ε + Bl

(
(8l − 5)

3

)
r5−8l
ε − Clr

3
ε . (3.43)
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It follows that

MGR(r)−MGR(rε) = Al

(
r3−4l
ε − r3−4l

)
+ Bl

(
r5−8l
ε − r5−8l

)
−Cl(r

3 − r3
ε ) (3.44)

= MGR,ε + Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
− Cl(r

3)

(3.45)

MGR,ε = Al

(
r3−4l
ε

)
+ Bl

(
r5−8l
ε

)
− Cl(−r3

ε ) (3.46)

MGR(r) = MGR,ε′ + Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
− Cl(r

3)

(3.47)

M+
GR(r) = MGR,ε′ + Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
(3.48)

MGR,ε′ = MGR,ε + MGR(rε) (3.49)

M+
GR(r) = MGR(r) + Cl(r

3). (3.50)

Formula (3.48) is a key result for this section, in a suitably simplified form,
which can be used to find, the quantum steady state energy values El and
which I also intend to try out for the special case quantum state l = 8 as a
generator of galactic rotation curves. The reason for this choice of special
case will be explained later. This involves evaluating the coefficients having
given the free parameters specific values. This will be carried through in
the next subsection after firstly dealing with the steady state energies issue.
From formula (3.48) we can obtain the total positively gravitating mass Ml

associated with each quantum state l by taking the limit r → ∞ with the
result

Ml = M+
GR(∞) = MGR,ε′ = MGR,ε + MGR(rε) (3.51)

as both 3 − 4l and 5 − 8l are negative. To obtain this result the nega-
tively gravitating dark energy mass involved in the term −Cl(r

3) has to be
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excluded as at (3.48). In more detail

Ml = M+
GR(∞) = Al

(
r3−4l
ε

)
+ Bl

(
r5−8l
ε

)
− Cl(−r3

ε ) +

Al

(
4lr3−4l

ε

3
− r3−4l

ε

)
+

Bl

(
r5−8l
ε (8l − 2)

3
− r5−8l

ε

)
− Clr

3
ε (3.52)

=
r4l
0 s(tb)c

2Λ

2G(4l − 3)

(
2a(2l − 1)2

π

)2l(
4lr3−4l

ε

3

)
+

3r8l−2
0 s(tb)c

2Λ

2G(8l − 5)

(
2a(2l − 1)2

π

)4l−1(
r5−8l
ε (8l − 2)

3

)
(3.53)

=
r4l
0 s(tb)MG2lr3−4l

ε

R3
Λ(4l − 3)

(
2a(2l − 1)2

π

)2l

+

3r8l−2
0 s(tb)MGr5−8l

ε (4l − 1)

R3
Λ(8l − 5)

(
2a(2l − 1)2

π

)4l−1

.(3.54)

It is interesting to consider the meaning of this last formula under the
factored dimensioned decomposition of the gravitational constant, G, as in
the last two lines above

G = M−1
G R3

Λ(RΛ/c)−2, (3.55)

→ c2Λ

G
=

3MG

R3
Λ

(3.56)

where RΛ is the de Sitter radius, and which essentially defines a mass MG

[53] and if we represent the total mass associated with a galaxy in a quantum
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state l and as defined by the parametric values rε and r0 as Mg,l(rε, r0), then

MGR(∞) → Mg,l(rε, r0)

Mg,l(rε, r0) =
r4l
0 s(tb)MG2lr3−4l

ε

R3
Λ(4l − 3)

(
2a(2l − 1)2

π

)2l

+

3r8l−2
0 s(tb)MGr5−8l

ε (4l − 1)

R3
Λ(8l − 5)

(
2a(2l − 1)2

π

)4l−1

(3.57)

N−1
l (r0, rε) =

Mg,l(rε, r0)

MG

=
r4l
0 s(tb)2lr

3−4l
ε

R3
Λ(4l − 3)

(
2a(2l − 1)2

π

)2l

+

3r8l−2
0 s(tb)r

5−8l
ε (4l − 1)

R3
Λ(8l − 5)

(
2a(2l − 1)2

π

)4l−1

, (3.58)

where Nl(r0, rε) is the number of galaxies in quantum state l that would be
needed to form a universe of total mass MG.

The objective of this section was to find the steady state energies

El = E(n(l)) (3.59)

to be associated with the sub-factor density solutions of the cosmological
Schödinger equation represented as functions of the quantization integer
l. From the above discussion, after taking into account the more detailed
specification of the solutions by rε and r0, a good choice seems to be

El(rε, r0) = Mg,l(rε, r0)c
2. (3.60)

The mass MG from the decomposition of the gravitational constant has an
approximate value 2.00789× 1053kg which is close to estimates of the total
mass of the universe that have been made in recent years. This actual
theoretical value is a possible candidate for an exact value for the mass of
the universe. Thus the formula (3.57) gives a quantized relation between
a possible mass for the universe MG and how that as a total mass can be
additively built from a number Nl, (3.58), of galactic masses of specific type,
quantum number l and of parametric form determined by the values given to
r0, rε. I shall examine this rather unexpected relation between the possible
large mass of the universe and galactic sub-masses in the next section.
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4 Galactic Masses relation to Universe Mass

I have shown in reference ([53]) that, if it is assumed that the total mass
of the universe is given by MG, then the de Sitter radius RΛ is the radius
of the universe at time, tc, when the acceleration of the expansion of the
universe was exactly zero. The epoch time tc is much in the past and very
roughly about half the age of the universe now. The radius of the universe
now is also very roughly twice the de Sitter radius RΛ. It is obvious that
the radii of the galactic cores will be many orders of magnitude less than
the radius of the universe now and therefore also many orders of magnitude
less than RΛ. In practice, appropriate values for the adjustable constants
(r0, rε, K) and a may be obtained from the physical context. G, of course,
is well known and tabulated by CODATA.

In the last two sections a relation between total mass of the universe,
if taken to be MG, and a possible set of constituent quantum number de-
scribed galactic masses is given by (3.58). From this relation the number
Nl of such constituent masses involved, if all in the same quantum state, is
given by (3.58). Of course, the type of galaxy involved in the actual universe
from the usual or quantum point of view ranges over many different forms
or quantum states. However, using this theory formulation we can raise the
idea of spatially uniform cosmology to a new superior level of galactic iden-
tity uniformity, a collection of galaxies all with the same quantum number
l. In the next section I shall examine an internal to dark matter quantized
version of Newton’s law of gravitation.
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5 Quantized Newtonian Law of Gravitation

We note the decomposition of Ml(r) and M ′
l (r) into positive and negative

parts,

Ml(r) = Ml+ + Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
− Clr

3 (5.1)

= Ml+ + Ml−(r), say, (5.2)

Ml−(r) = Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
− Cl(r

3) (5.3)

M ′
l (r) = Ml+ + Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
+ Clr

3 (5.4)

= M ′
l+(r) + M ′

l−(r), say, (5.5)

M ′
l−(r) = Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
(5.6)

M ′
l+(r) = Ml+(r) + Clr

3. (5.7)

The last formulae with the primes on the Ms is the actual rather than
effective mass version. I am here using primes instead of the equivalent gr
subscripts to maintain simplicity of notation. Given the detailed formula
for Ml(r) (5.1), the total amount of mass within spheres of radius r, the
Newtonian gravitational potential felt at radius r can be written down as,

Vl(r) =
M ′

l (r)G

r
=

M ′
l+G

r
+

M ′
l−G

r
. (5.8)

The prime on the Ml− is here being used to indicate that the actual mass
version is being used in this definition rather than the effective mass version.
If we now substitute M ′

l+(r) from equation (5.7) into the above equation we
get

Vl(r) =
M ′

l (r)G

r
=

(Ml+(r) + Clr
3)G

r
+

M ′
l−G

r
(5.9)

=
(Ml+(r) + Clr

3)G

r
+

M ′
l−G

r
. (5.10)

The emergent feature here is that the Newtonian gravitational constant
G appears, as usual, here in the numerator with the Ms but an inspection of
lines (3.39), (3.40) and (3.41) show that it also appears in the denominator
of the same formulae. Thus it cancels out and makes no contribution to the
dark matter gravitational potential. On first encounter, this seems a very
startling result. However, in can be explained within the structure of the
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dust universe model as follows. All the mass functions at line (5.1) have an
initial coefficient, (5.11), which becomes, they having been multiplied by G,
an initial coefficient, (5.12) and (5.13), for the gravitational potential terms
at line (5.8).

4πr4l
0 (3/(8πG))(c/RΛ)2 (5.11)

→ 4πr4l
0 (3G/(8πG))(c/RΛ)2 = 4πr4l

0 (3/(8π))(c/RΛ)2 (5.12)

= r4l
0 (c2Λ/2). (5.13)

The result (5.13) follows from the definition of RΛ in terms of Λ. Thus ac-
cording to (5.13) the usual gravitational coupling constant G as a multiplier
effectively converts to the cosmological constant Λ as the coupling constant
for describing the distant gravitational effect of dark matter. Hence the
gravitational field for dark matter is not quite the usual Newtonian result
in spite of the fact that it looks superficially identical to it. On reflection
this is not surprising as in this theory dark matter density, ρ(t), the domi-
nant type of matter in the universe before dark energy at the present epoch,
appears as some sort of time variable disturbance, sinh−2(3ct/(2RΛ)), of the
dark energy space time constant density field, (3/(8πG))(c/(RΛ)2, by the
formula

ρ(t) = (3/(8πG))(c/(RΛ)2 sinh−2(3ct/(2RΛ)) (5.14)

= MG/VU(t). (5.15)

The last formula being valid if the mass of the universe MU = MG and
VU(t) is the volume of the universe at epoch time t. The constant density

(3/(8πG))(c/(RΛ)2 = (Λc2/(8πG)) (5.16)

is Einstein’s dark energy density introduced to explain his mathematical
cosmological constant Λ as being due to an actual physical dark energy
mass density but appearing here as the basis of all energy density, particu-
larly dark matter density. From lines (5.14) and (5.15), it is very clear that
the time variable disturbance I referred to earlier is no mystery at all in this
cosmological model. The disturbance is just a consequence of the fact that
a constant amount of dark matter, MG, remains within the expanding with
epoch time volume of the universe VU(t). Consequently, the mass density of
the universe decreases with time and it is this process that accounts for the
sinh−2(3ct/(2RΛ)) factor at (5.14). However, the point I wish to emphasise
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is that the constant amount of dark matter within the expanding spherical
universe is intimately related by (5.14) to Einstein’s universally constant
dark energy density , a constancy and existence for which that extends to
outside the expanding spherical sphere of the universe. Dark energy is
hyper-universal. The remarks above are perhaps digressional, but the point
I am making about the Newtonian gravitational potential within the dark
matter halos discussed above is that it differs fundamentally from the usual
gravitational Newtonian potential in that its source is the disturbed density
for dark energy . Notably, the gravitational potential for dark matter (5.8)
is, as has been shown above, distinctly not of the usual G coupled New-
tonian type. Further more, it is quantized with a quantum state number l
associated with the mass sources involved being constructed from solutions
of a cosmological Schrödinger equation for dark matter halo wave functions.
A quantization of gravity is here coming from the cosmological constant, Λ.
This remark is reinforced by the unexpected result of the decomposition
of the total gravitation mass Ml for a galaxy into the two parts Ml+ and
Ml− at (5.2). The positive part Ml+ within the local gravitational poten-
tial generates the usual attraction to the centre Newtonian field whilst the
negative part generates negative gravity repulsion. This is additional to the
repulsive field arising directly from Einstein’s cosmological constant. Thus
negatively gravitating material is greatly involved with dark matter addi-
tionally to its involvement arising from the existence of Λ. The explanation
for the existence of the negative term in the gravitating mass source or its
gravitating potential is very clear from the mathematics and the way it has
been obtained from this theory. The formula for the gravitating mass M(r)
within a sphere of radius r is basic to this work. However, the total object
mass involved M(∞) extends to infinite distance. Thus the mass outside a
sphere of radius r centered on a galaxy, Mout(r), is

Mout(r) = M(∞)−M(r) = Ml+ −Ml(r) = −Ml−(r) > 0, (5.17)

by (5.2). Thus the positive mass −Ml−(r) outside the sphere of radius r on
which the galaxy is centred contributes negatively to the gravitational po-
tential at r. Thus clearly in this case the negative mass within the sphere is
fictional and simply is a reflection of actual positive mass outside the sphere.
This result at (5.17) can be seen to be an explanation for the essential need
for a cosmological constant in the Einstein field equations by the following
considerations. There are obviously very large numbers of galaxies spread
throughout the cosmos. According to this theory each galaxy is an infinitely
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radially extended structure. Hence if we consider any location distance r
from the centre of a galaxy at such a position its gravitation potential will
be felt included in which will be the influence from its mass outside radius
r. This location will also be usually outside all the other infinitely extended
galaxies in the universe. Thus all the rest of the galaxies will make a resul-
tant but usually very small negative gravitation contribution. This small
negative gravity component is supplied by the Einstein additional ρΛ input
density contribution in the form of an extra a component of the stress en-
ergy momentum tensor so that in this case this mass within the sphere is
actually negatively gravitational and not a reflection from actual positively
gravitating mass outside the sphere. It seems that Einstein’s field equations
without Λ only describe a local object in isolation from the rest of the uni-
verse. Thus negatively gravitating material is not quite so weird as it has
seemed for the past decade since Λ was reinstated. Negative gravitation is
just a collective very small attraction felt at any point towards all the rest
of the rest of universe but usually masked by the existence of local posi-
tively gravitating material towards that point and a directional uniformity.
However, this issue is philosophically deep and complicated and I intend to
discuss it in more detail in future publications.

5.1 Galactic Rotation Curves

In order to study the galactic rotation curves as a function of r generated by
a mass function of r such as (5.1),(5.2)and (5.3) we can look at the simplest
case and also use a reasonable set of values for the free parameters r0, rε.
We need the values,

Λ = 1.35× 10−52 (5.18)

c = 299792458. (5.19)
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Al(r0) =
r4l
0 s(tb)c

2Λ

2G(4l − 3)

(
2a(2l − 1)2

π

)2l

=
c2Λs(tb)β

2l(2l − 1)4l

2G(4l − 3)
(5.20)

Bl(r0) =
3r8l−2

0 s(tb)c
2Λ

2G(8l − 5)

(
2a(2l − 1)2

π

)4l−1

=
3c2Λs(tb)β

4l−1(2l − 1)8l−2

2G(8l − 5)

(5.21)

Cl =
c2Λ

3G
→ 2997924582 × 1.35× 10−52

3G
=

4.0444× 10−36

G
. (5.22)

Ml+ = MGR,ε + MGR(rε) =

Al

(
r3−4l
ε

)
+ Bl

(
r5−8l
ε

)
− Cl(−r3

ε ) +

Al

(
4l − 3

3

)
r3−4l
ε + Bl

(
(8l − 5)

3

)
r5−8l
ε − Clr

3
ε .

(5.23)

The quantity β =
2ar2

0

π
introduced above at (5.20) has the dimensions length

squared, m2, is a useful simplifier as it is arbitrary because r0 is arbitrary it
can be given the value unity when convenient. Thus largely we can ignore
r0 and sideline a. All the mass contributions combined for the quantum
state l are given at (5.25)

Ml(r) = M+(r) + MP (r)−MΛ(r) (5.24)

= Al

(
4lr3−4l

ε

3
− r3−4l

)
+ Bl

(
r5−8l
ε (8l − 2)

3
− r5−8l

)
− Clr

3.

(5.25)

In more detail, we have

Ml(r) =
c2Λs(tb)β

2l(2l − 1)4l

2G(4l − 3)

(
4lr3−4l

ε

3
− r3−4l

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2

2G(8l − 5)

(
r5−8l
ε (8l − 2)

3
− r5−8l

)
− c2Λ

3G
r3.

(5.26)
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This can be separated into positive, Ml+(r), and negative, Ml−(r), signed
terms as follows

Ml+(r) =
c2Λs(tb)β

2l(2l − 1)4l

2G(4l − 3)

(
4lr3−4l

ε

3

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2

2G(8l − 5)

(
r5−8l
ε (8l − 2)

3

)
=

Ml+ = a constant with respect to r variation. (5.27)

Ml−(r) =
c2Λs(tb)β

2l(2l − 1)4l

2G(4l − 3)

(
−r3−4l

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2

2G(8l − 5)

(
−r5−8l

)
− c2Λ

3G
r3 (5.28)

Ml−,0(r) =
c2Λs(tb)β

2l(2l − 1)4l

2G(4l − 3)

(
−r3−4l

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2

2G(8l − 5)

(
−r5−8l

)
, (5.29)

the last version above not including Einstein’s dark energy term. Thus we
have

Ml(r) = Ml+ + Ml−(r) (5.30)

Ml,0(r) = Ml+ + Ml−,0(r) (5.31)

and, using the actual masses case, the Newtonian gravitational potential at
radius r is

Vl(r) =
Ml+G

r
+

c2Λs(tb)β
2l(2l − 1)4l

2(4l − 3)

(
−r2−4l

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2

2(8l − 5)

(
−r4−8l

)
+

c2Λ

3
r2. (5.32)

It follows that the galactic rotation curves given as transverse velocity
squared as a function of r have the equation

v2
l (r) =

Ml+G

r
+

c2Λs(tb)β
2l(2l − 1)4l

2(4l − 3)

(
−r2−4l

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2

2(8l − 5)

(
−r4−8l

)
+

c2Λ

3
r2. (5.33)
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The gradients of these curves with respect to r are

∂v2
l (r)

∂r
= −Ml+G

r2
+

c2Λs(tb)β
2l(2l − 1)4l(2− 4l)

2(4l − 3)

(
−r1−4l

)
+

3c2Λs(tb)β
4l−1(2l − 1)8l−2(4− 8l)

2(8l − 5)

(
−r3−8l

)
+

c2Λ2

3
r.(5.34)

5.2 Galactic Curves for a Small Galaxy

I have decided to check out the galactic curve kinematics that this theory
delivers for a small galaxy which will be identified below. However, it was
initially and in fact still remains unclear how to identify galaxies within
the quantum set off galaxies derivable from this new theory. Thus to get
going with the use of this theory some trial and error was required which I
will now briefly explain. The theory can deliver an infinite discrete set of
quantized mass values. However, the actual numerical values involved with
this set is determined by the free input parameters which are rε, β and tb.
It seems to me that these three parameters can take on arbitrary values.
However, it is desirable that physically reasonable values are chosen. If one
takes the view, among other trial possibilities, that we use a set of quantum
states determined by the quantum parameter l = 1, 2, 3 . . . 9 associated with
some definite value, to be explained later, of rε = 1.3213133 m, in meters
say, β = 1 m2 in meters squared, with tc the approximate epoch time when
the universe has zero radial acceleration,

tc =
2Rλ sinh−1(2−1/2)

3c
(5.35)

= 2.18285× 1017 s, (5.36)

the function Ml+ at (5.27) generates in kilograms the nine values,

3.4114× 10−25, 5.18055× 10−20, 2.52104× 10−12,

0.00246163× 100, 2.09608× 107, 9.76751× 1017,

1.84565× 1029, 1.14693× 1041, 2.00789× 1053. (5.37)

I have only taken values for the quantum number up to l = 9 because the
masses generated beyond 9 with this value for rε are substantially greater
than the usual ideas of what the mass of the universe is likely to be. The
last mass displayed above for l = 9 coincides with the value of MG, the
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value that could be taken to be the mass of the universe. This last value was
deliberately achieved by choosing rε = 1.3213133. The incredibly wide range
of mass values generated for ranges of the integer quantum number l is to my
mind very striking. The rest mass of the top quark is 3.11966×10−25 and the
rest mass of the Higgs boson is thought to be approximately 2.22833×10−25

kilograms so that all the masses in this range are astro-physically interesting.
0bjects in the range 10−12 to 1029 above are very common and could include
large molecules through planets to objects as heavy as small stars and lastly,
the last but one entry above 1041, could be a small galaxy in relation to the
milky which probably has a mass of about 1042 kilograms. With a different
values of rε the usually assumed value of the milky way can be obtained
but my choice of rε was to include exactly the mass MG in the hope that
the other masses generated would somehow acquire special significance from
its inclusion. Clearly the route forward is uncertain and deserving of much
more investigation. I have examined the galactic rotation curves of the small
galaxy above, quantum state l = 8, with the formula for velocity gradient
with the formula (5.38) below that can be obtained in detail using (5.33)
and (5.34).

∂v(r)

∂r
=

∂v2(r)

2v(r)∂r
. (5.38)

The following list of values of tangential rotation velocity curve gradients
just before, 0.8rSM , the visibility boundary at r = rc = rSM and then
extending out further to 1.2rSM , the results are shown below,

r in meters Gradient of v(r)

0.8× 1.24× 1022 −5.04× 10−23

0.9× 1.24× 1022 −4.48× 10−23

rSM = 1.0× 1.24× 1022 −4.032× 10−23

1.1× 1.24× 1022 −3.67× 10−23

1.2× 1.24× 1022 −3.36× 10−23. (5.39)

From the second list above, these curves are decisively flat.

6 Stability of Dark Matter Galactic Halos

There are some deep and complicated issues about the stability of particle
distributions assembled under the mutual Newtonian gravitation attraction
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of the component particles ([54]). This problem does not impact on the
theory for the dark matter galactic halos discussed in this paper, as I shall
now explain. It is widely believed nowadays that the missing matter referred
to as dark matter exists within a spherical halo that engulfs the visible parts
of a galaxy and usually extends greatly beyond the visible parts. I think
there is very little evidence that this assumption is correct but it does seem
to be a plausible working assumption. Thus let us assume that this view
of the situation is correct then it also seems likely that the dark matter is
not necessarily rotating with the galaxy for otherwise it would be flattened
and not spherical as is usually its parent visible galaxy. Further, remaining
spherical and not having clumped into a flattened form in its evolution
suggests its compulsive dynamics is not usual. If it is in fact spherical and
not rotating then what keeps it in its extended state? The obvious answer
to this question is that it is a gaseous structure and in equilibrium caused
by an outwards pressure from the gas and an inwards pull from gravitation
effectively from its center. The fact that such equilibrium conditions can
likely occur at some time, using Newtonian gravitation theory with gas
dynamics theory, the forms of possible equilibrium mass densities can be
found. However, such solutions are not necessarily time wise stable any more
than there is necessarily zero motion when acceleration is zero in general.
An absolutely static structure is clearly not appropriate for the description
of a galaxy as complex rotational motion is in fact observed. The main static
aspect is the requirement that there should be no overall radial motion and
that the galaxy should not be expanding with the substratum. Clearly,
the idea of steady state motion in the quantum context is just right for
galaxy description. In quantum theory, systems with very complex internal
motions are successfully described under this tag and usually such systems
have quantum state numbers attached to a range of discrete quantum states.
However, such quantum systems play out their motion under the influence
of some central potential energy, such as the coulomb potential for example.
The quantized dark matter densities with integer quantum number l that I
found from isothermal gravitational equilibrium theory are just crying out
to be Schrödinger densities formed from the Hermitian scalar product from
Schrödinger wave functions. I have shown above and elsewhere [52] that
the Schrödnger equation needed in this context involves a non-gravitational
potential, V1(r) if it is to play the part of supplying steady state solutions
that space wise coincide exactly with the solutions from the new isothermal
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equilibrium theory. However, each solution Ψ1(r, t) has its own Schrödinger
equation and potential function Vl(r) as given below in terms of the quantum
integer l instead of the isotropic index n(l).

Ψ1,l(r, t) = e−
El(rε,r0)it

~

(
−2a(1− 2l)2

π

)l

(r/r0)
−2l (6.1)

El(rε, r0) = Mg,l(rε, r0)c
2 (6.2)

Mg,l(rε, r0) =
r4l
0 s(tb)MG2lr3−4l

ε

R3
Λ(4l − 3)

(
2a(2l − 1)2

π

)2l

+

3r8l−2
0 s(tb)MGr5−8l

ε (4l − 1)

R3
Λ(8l − 5)

(
2a(2l − 1)2

π

)4l−1

(6.3)

Vl(r) = El(rε, r0) +
~2l(2l − 1)

mr2
(6.4)

i~
∂

∂t
Ψ1,l(r, t) = − ~2

2m
∇2Ψ1,l(r, t) + Vl(r)Ψ1,l(r, t). (6.5)

The equations above summarise the basic results from a quantum view of the
type of wave functions and their parametric dependants that needs pertain
if the new isothermal gravitation theory solutions are also solutions, Ψ1,l,
of a Schrödinger equation with a potential function Vl(r). Mathematically,
they can in fact be regarded as the solution of an unusual classical eigen-
value problem expressed as follows. Find the eigen-potentials Vl(r) and
steady state energy wave functions Ψ1.l that must be operative if the classical
Newtonian energy equation is replaced by what might be called a potential
function operator version of Schrödinger shape V̂ (r) with eigen-values Vl(r)
and eigen-wave functions Ψ1(r, t) as below

V̂ (r) = i~
∂

∂t
+

~2

2m
∇2 (6.6)

V̂ (r)Ψ1,l(r, t)) = Vl(r)Ψ1.l(r, t). (6.7)

Of course, given only the last two equation, the solutions could not be found
from them alone, but they do correctly describe the basis of the problem to
be in classical eigen-value theory and, importantly for this papers, empha-
sise the conclusion that galactic halos exist under a special quantized sta-
bilising internal potential in addition to their actual formative gravitational
potential structure which itself is also not usual, but rather is Λ orientated
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as has been shown in section 5. The Schrödinger equation for Ψ1.l(r, t) does
not involve gravity at all. It is a purely quantum structure that represents a
discrete infinity of endpoints to cosmological clumping and so the potential
involved that conditions steady state motion is a representation of the vari-
ety of possible forces involved in clumped mass stability, [52]. Gravitation
comes into the picture through the cosmological Schrödinger equation and
its solutions ΨS(r, t) of which the Ψ1.l(r, t) solutions are possible quantized
modulating factors that supplies the space variability with radial position
r and also importantly ensures physical stability via steady state motion.

7 Conclusions

The cosmological dust universe model is applied to the problem of galac-
tic modelling using the quantized mass density solutions of a new theory
of gravitational isothermal equilibrium. These solutions depend on a key
integer state determining parametric pure number l related to the isotropic
index n and three other physically adjustable parameters. Assuming the
adjustable parameters fixed in value, it is shown that all these density so-
lutions are derivable from amplitude solutions of a Schrödinger equation
with a special quantized inverse square law eigen-potential. To adequately
define these density solutions and then use them to describe dark matter
galaxy halos it is necessary to redefine these initially space origin divergent
solutions by replacing a small region at the origin with a constant section
of radius rε, which then becomes one of the input adjustable parameters
and the core radius of the galaxy. The density solution are all infinitely
extended in space but having finite mass core radii they can be integrated
over all space to generate mass spectra dependent on ranges of the quantum
number l. One such spectrum is calculated so as to terminate at quantum
number l = 9 giving a theoretical total mass of the universe, MG. The last
but one value l = 8 generates a possible small galaxy mass the galactic star
rotation curves of which are derived. They are shown to be very flat. The
mass spectrum in this case for values near 10−25 could possibly represent the
most fundamental particle of them all, the Higgs boson. In using the quan-
tized mass values to form the usual Newtonian gravitation potential in the
study of galactic rotation curves involving the usual G, coupling constant,
it is found that G becomes replaced with Einstein’s cosmological constant Λ
by fraction cancellation. This implies that consistent with the dust universe
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model basis on Λ, the quantization of gravity implied by this model is Λ
dependent rather than G dependent. The structure of the gravitation po-
tential V (r) reveals that a simulation of dark energy is involved in its form.
For any value of r apparent negative mass nearer to the radial origin than
r is actual positive mass at positions further from the radial origin than r.
This has the effect that the apparent negative mass is actual positive mass
outside the radius of reference. Thus suitably orientated positive mass can
appear elsewhere to be negative. It is suggested that this rather unexpected
structure in this formalism could be used to explain actual dark energy mass
in terms of positively gravitating mass. This last point is an idea under con-
struction and will need be examined to see if it reinforces or conflicts with
my earlier work on dark energy. However, Einstein’s cosmological constant
is absolutely essential to all aspects of this physical theory.

Added section on corrections, 21st June 2012

8 Explanation of Corrections

The mistake I made and have corrected in this paper was real and regret-
table. However, it has turned out to be useful for the understanding of what
seems to me to be a rather subtle power associated with using the gravita-
tional potential function. It seems that the process of taking the gradient of
that function is mathematically rather subtle. In writing down the gravita-
tional potential to use in deriving the equivalent of Newton’s inverse square
law formula for force on a particle for the case when dark energy mass
was involved as a source of the gravity, I assumed that the mass should
be proceeded with a minus sign. Consequently, I chose what I have called
in this paper the effective mass version of the total mass for constructing
the potential function. This has turned out to be a wrong choice. The
process of taking the gradient of a gravitation potential function, operating
with ∇, distinguishes between ordinary gravitational mass and negatively
gravitating mass on purely analytical geometrical properties of the mass
distributions and thus generates the correct sign automatically. Thus by
adding the negative sign to the mass simply undid the built in cleverness
of the standard ∇ operation on the potential function. The correction to
this problem was obviously to start with the actual mass as opposed to
the effective mass and let the standard procedure do the work. Thus the
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corrections involved just changing the use of the effective mass to the ac-
tual mass wherever appropriate in the paper. I am writing this explanation
of my mistake because I think it reveals something significant about the
dark energy concept generally. This dependence of the dark energy concept
on geometrical orientation has, as the reader will have seen, has come up
strongly in interpreting what the dark energy concept means. Thus my
mistake has, I think, had very positive consequences. I can translate these
remarks onto a definite mathematical explanation as follows. Consider the
total actual gravitating mass and its potential

Vl(r) =
M ′

l (r)G

r
=

M ′
l+G

r
+

M ′
l−G

r
. (8.1)

M ′
l−(r) = Al

(
−r3−4l

)
+ Bl

(
−r5−8l

)
(8.2)

M ′
l+(r) = Ml+(r) + Clr

3. (8.3)

The acceleration per unit mass caused by this potential at distance r from
the origin is

r̂ · ∇Vl(r) =
c2Λs(tb)θ

2lr3
ε (2l − 1)4l

2(4l − 3)

(
− 4l

3r2
+

(4l − 2)r1−4l

r3−4l
ε

)
+

3c2Λs(tb)θ
4l−1r3

ε (2l − 1)8l−2

2(8l − 5)

(
−(8l − 2)

3r2
+

(8l − 4)r3−8l

r5−8l
ε

)
+

c2Λr3
ε

3

(
2r

r3
ε

)
, (8.4)

where the dimensioned parameter β has been replaced by the dimensionless
parameter θ = β/r2

ε to clarify the dimensionality of the various contribu-
tions. Thus all the last bracketed quantities become dimensionally inverse
square but not all variably inverse square. All the coefficients of the large
brackets have dimensions m3s−1. Thus all the terms are accelerations. No-
tably, Newton’s gravitation constant G does not occur. In fact, G is replaced
by Λ. This quantized gravitational expression is clearly a substantial gen-
eralisation of Newton’s law of gravitation. However, we can identify main
inverse square law forms as the first terms in the first two large brackets.
Both of these terms have minus signs and so represent the usual Newtonian
gravitational law of attraction towards the origin. However, both of the
large brackets contain also many possible positive signed terms of inverse
form determined by the quantum state parameter l. They thus represent
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repulsions from the origin. Clearly the last positive term above represents
the repulsive effect of twice Einstein’s dark energy term. The two first large
brackets originate in the galactic context, from the galactic mass density and
the Einstein pressure term mass density from general relativity respectively.
The inverse repulsive terms in the first two brackets with their positive signs
appear to go along with the negative gravity of the last term. They are the
terms which simulate negative mass by contributing repulsion and actually
exist outside the reference sphere of radius r. I mention one more effect
from the correction. The negative gravitating term contributed by Ein-
stein’s dark energy, the last term above, was left out when I calculated the
rotation curve for the small galaxy on the grounds that for a small galaxy
it would only make a negligible contribution on account of the smallness
of Λ. However, if is used in such calculations under the corrected version
of this theory it would contribute a small positive addition to the rotation
curve gradient formula for large galaxies. For sufficiently large galaxies the
rotation curves would eventually curve up from their flat condition at very
large distances from the origin. There has been mention of observations to
this effect.
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