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This paper focuses on fundamental errors that have caused much confusion in EM theory and practice for 
almost a century.  These errors stem partly from a lack of appreciation that the scalar and vector potentials of 
classical Maxwell Equations are the fundamental physical entities and not their force related field representa-
tions, E and B.  Another common source of difficulty related to these Maxwell assumptions is the point approx-
imation of charge sources in lieu of a proper model of their true distributed nature.  These deficiencies lead in 
turn to wrong models for moving particles, incorrect expressions for electric energy density of moving particles, 
and confusion in the area of energy flow using the standard Poynting theorem.  These errors are presented and 
clarified with a description of the distribution of the scalar potential, leading to consistency with modern day 
physical measurements, as a suggestion for correcting most physics textbooks. 

 

1. Introduction 

Faraday and Maxwell didn't know about electrons. Maxwell 
had a vague idea that electric current in conductors was a fluid.  
In his treatise of 1873, he gave two sets of equations for the elec-
tromagnetic field.  One set assumed the fundamental field quan-
tities were “forces” that would act on minute test charges if 
placed in the field, and the other set was thought to be a simpli-
fying mathematical manipulation in terms of a scalar and a vec-
tor potential.  The remaining errors in classical E&M, still ignored 
or repeated in most textbooks, can best be understood and cor-
rected by looking at Maxwell's equations for “matter free” space. 

The “force” equations are written (Heaviside-Lorentz units): 
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The potential equations are written (Heaviside-Lorentz units): 
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Any φ and A found from Eqs. (2) give the proper values of E 
and B through the connecting equations: 
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To find E and B from Eqs. (1), four equations must be solved; 
from Eqs. (2), essentially half that number. 

Most modern textbooks label E and B as the fundamental 
fields, E is called the “electric” field and B is called the “magnet-
ic” field.  These definitions lead to the major source of error in 
classical E&M.  A significant amount of experimental and theo-
retical work makes it obvious that the fundamental fields are   
and A; so that, from Eqs. (3), E is a mixture of the electric field   

and the magnetic field A , and B is an incomplete part of the mag-
netic field A. 

2. A Solution 

Most of the difficulties appear in the microscopic regime of 
particle structure.  At present, the most commonly used scalar 
potential in Eqs. (2) for a spherically symmetrical, charged parti-
cle at rest is the “point” charge which, with its infinities, is not a 
“physical” solution.  As explained in the Short Book [1], a much 
simpler and easier to work with finite form is 

  2
0 1 ir re     (4) 

This potential has only two significant features, the center 
value 0  (positive or negative) and the radius ir  of the inflection 

point (Fig. 1). 

 

Fig. 1.  Elementary particle potential 

The corresponding charge density distribution, 

 2    (5) 

is a smooth shell of charge distortion that peaks at half ir .  Inte-

grated over all space, the total charge is 

 08 iq r   

Again, the at rest electric energy density distribution 
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is a smooth shell of energy distortion that peaks at the inflection 
radius ir .  Integrated over all space, the resulting finite energy is 

 2
0 02 iE r   

So far, the finite particle solution is satisfactory; but it still 
must be shown to give the constant velocity total energy 0E , 
where u is the velocity and   is defined as 
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The calculation begins by going back to Eqs. (2) and looking 
for a finite potential of the full changing field scalar equation 
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Paralleling Eq. (4), the potential of the constant velocity field, 
moving in the x direction at velocity u, is 

  2
0 1 ir re     (9) 

where 2 2 2r x R    is in cylindrical coordinates.  Eq. (9) dif-

fers from the spherical case of Eq. (4) mainly in that the equi-
potentials are oblate spheroids; not because of any longitudinal 
contraction, but because the potential   expands laterally.  The 
longitudinal contraction of E is always emphasized, but the lat-
eral expansion of   is more significant in relation to energy and 
charge. 

The potential in Eq. (9) can be checked by using a Lorentz 
transformation on the rest potential of Eq. (4).  If the charge den-
sity   found from Eqs. (8) and (9) is integrated over all space, 

the total moving electron charge is found to be 08 iq r , the 

same as for the charge at rest, a well established fact. 
To find the total field energy of the moving particle, the cor-

rect energy density must be integrated over all space. This is the 
second point at which the classical E&M theory of particle struc-
ture breaks down. 

In most modern textbooks the expression for electric energy 
density is commonly written 
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In a way, this form works for radiation propagation (where 
  is zero), but in other applications (in association with the 

Poynting theorem) it has led to a long, confusing literature of 
strange paradoxes and suggested alternatives.  If Eq. (10) is inte-
grated over all space, it fails to give a total energy 0E . Combina-

tions of Eq. (10) and the B field also fail [1]. 
One hint as to the failure of Eq. (10) relates to the success of 

Eq. (8) in defining moving microscopic charge density, for there 
is an alternative picture of elementary particle structure that 
gives insight into the basic nature of microscopic charge and elec-
tric energy densities.  If it is assumed that the potential   is the 
only physical entity in the electric field, then the construct in Fig. 
1 is the total essence of an elementary particle's bulk nature, i.e. a spe-

cific distortion.  In the “point charge” model, charge is “some-
thing” at the point producing the field.  Electric energy density is 
even more evanescent.  However, the nature of   in the preced-
ing allows a different approach.  The microscopic Eqs. (5) and (6) 
can be considered to define two secondary implicit distortions, 

 21
2
    and 2  automatically present  if  is present.  They do 

not cause the field, they are the result of it. 
An erroneous assumption, adopted almost unanimously 

around 1900 and still held today, is that, in the microscopic case, 
the elements of distributed charge   inside a single particle, for 
example, individually obey Coulomb's law just as whole charged 
particles do in the macroscopic case.  Lorentz had doubts, but 
they did not prevail.  However, there is no direct experiment to 
support this assumption, and electrons, for example, do not fly 
apart.  Thus, microscopically, there is no reason to expect the 
distributed “elements” of the   field to produce distant actions 
on each other such as the Coulomb force, which, macroscopical-
ly, results from two whole particle fields interacting.  That Eq. (8) 
gives the correct moving microscopic charge density bears this 
out.  Now that the physical nature of   and e  as secondary 
implicit distortions dependent upon  , rather than as sources of 
 , has been indicated, the path to the correct form of moving 
electric energy density e  is clear.  It should be formulated in 
exactly the same way that moving charge density   was. 

In going from the rest Eq. (5) to the moving Eq. (8), because of 
the finite rate of propagation, the charge density in time variable 
fields is assumed to change as 
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That this is true is a well verified fact. Considering the similar 
natures of   and e  as auxiliary distortions implicit in the shape 
of  , it would be surprising if electric energy density did not 
have the simple definition, parallel to Eq. (11) 
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for changing fields. Thus, Eq. (12) is offered here as the correct, 
complete definition of electric energy density.  It deserves serious 
attention, because it not only resolves the many paradoxes, but 
also leads to Lorentz invariance like Eq. (11).  Its success in 
providing the correct energy of the constant velocity particle 
warrants its adoption.  This can be seen as follows: the implica-
tion is that, in addition to spreading out laterally, at each point in 
the moving field the rest electric energy density distortion found 
from Eq. (6) has increased, and when integrated over all space 
gives a total electric energy 0E , a well established fact.  Thus, a 

reasonable finite charged particle description has been demon-
strated, and the correct form of the moving electric energy densi-
ty has been derived [1,2]. 

The third major breakdown in classical E&M relates to the de-
scription of energy flow in the fields using the Poynting theorem.  
The old Poynting theorem leads to weird and erroneous visuali-
zations of field energy flow, because E and B are not the true 
electric and magnetic fields.  A new Poynting theorem must be 
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derived from the   and A equations.  This leads to a simple vis-
ualization of energy flow with no apparent paradoxes [1,2]. 

3. Conclusion 

This paper has explained the reasons for and consequences of 
major fallacies in established physics that are perpetuated in 
most textbooks.  Important and novel herein is a specific descrip-
tion of the distribution of electric scalar potential for physically 
realistic, stationary, charged particles, that agrees with well es-
tablished results.  For moving particles, a correct distribution is 
derived, that differs from conventional understanding but re-
solves paradoxes and inconsistencies with experimental results.  
Confidence in this distribution is advanced by its agreement with 
the total charge being the well accepted same value as for sta-
tionary charged particles.  With the resultant proper definition of 
the scalar and vector potentials, the erroneous views of the force 
related E and B fields are resolved, and a path toward clearer 

understanding of energy flow is suggested, avoiding the conven-
tional Poynting vector components, that misrepresent the true 
electric and magnetic participants except in the special case of 
radiation.  More detailed results, derivations, and explanations 
are found at http://www.lafn.org/~bd261/. 
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