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This work presents a relativistic mathematical model for basic subatomic particles (BSPs) like electrons, 

positrons, and neutrinos, model that is based on fundamental particles that are continuously emitted and ab-
sorbed by the subatomic particles.  Subatomic particles interact via the longitudinal and transversal angular 
momentum of their fundamental particles, angular momentum that are proportional to the energy of the suba-
tomic particles.  The rules of interaction between the longitudinal and transversal angular momentum of fun-
damental particles are specified and the corresponding equations for the calculations of the linear momentum 
between subatomic particles are presented.  From the model results that the radius of a subatomic particle is in-
verse proportional to its energy and, that the incremental time to generate the force out of linear momentum is 
quantized.  All known forces are derived as rotors from one vector field generated by the longitudinal and 
transversal angular momentum of the fundamental particles.  The equation of the linear momentum between 
two static BSPs is analyzed in detail to show why protons in an atomic nucleus coexist, how gravitation is gen-
erated and why heavy atomic nuclei radiate.  The mechanism of elastic and destructive scattering of particles, 
based on the interactions between fundamental particles, is described.  A classification of BSPs with light speed 
is presented and the photon introduced as a sequence of BSPs.  Based on the quantification of the irradiated en-
ergy of BSPs, the Bragg equation, the Stern Gerlach bending and the flattening of galaxies' rotation curve are 
derived, without making use respectively of the wave-particle, the magnetic spin moment and dark matter, 
thus introducing a different physical interpretation of the underlying phenomenon.  The two states of the spin 
of BSPs are replaced by the pair building of two types of BSPs, namely the accelerating and decelerating BSPs. 

 

1. Introduction 

The methodology of today's theoretical physics [1-5], consists 
in introducing first all known forces by separate definitions in-
dependent of their origin, arriving to quantum mechanics after 
postulating the particle's wave, and is then followed by attempts 
to infer interactions of particles and fields postulating the invari-
ance of the wave equation under gauge transformations allowing 
the addition of minimal substitutions. 

The present approach [6] models subatomic particles as emit-
ting and absorbing continuously fundamental particles with lon-
gitudinal and transversal angular momentums (fields), and pos-
tulates then the interaction laws between angular momentum in 
that way that it is possible to deduce all known forces. 

Today´s theoretical physics also postulates the particle-wave 
(de Broglie) to explain patterns observed in particle diffraction 
that look similar to patterns observed in wave diffraction exper-
iments.  The present approach shows that the patterns observed 
in particle diffraction are generated by quantized bending mo-
mentums that result from the quantized irradiated energy. 

The approach is based on the following main conceptual 
steps:  The energy of an electron or positron is modeled as being 
distributed in the space around the particle`s radius or  and 

stored in fundamental particles (FPs) with longitudinal and 
transversal angular momentum.  FPs are emitted continuously 
with the speed e ev s  and regenerate the electron or positron con-

tinuously with the speed rv s .  There are two types of FPs, one 

type that moves with light speed and the other type that moves 
with nearly infinite speed (see Fig. 1).  BSPs emit and are regen-
erated always by different types of FPs resulting in the “acceler-
ating” and “decelerating” BSPs which have respectively regener-

ating FPs with light and infinite speed.  The density of FPs 
around the particle’s radius or  has a radial distribution and fol-

lows the inverse square distance law. 
Field magnitudes dH  are defined as square roots of the ener-

gy stored in the FPs. Cross product interaction laws between the 
fields dH  of BSPs are defined to obtain pairs of opposed angular 
momentum on their regenerating FPs, pairs that generate linear 
momentum which are responsible for the forces. 

Based on the conceptual steps, equations for the vector fields 
dH  are obtained that allow the deduction of all experimentally 
proven basic laws of physics, namely, Coulomb, Ampere, Lo-
rentz, Gravitation, Maxwell, Bragg, Stern Gerlach and the flatten-
ing of galaxies' rotation curve. 

Note: In this approach, Basic Subatomic Particles (BSPs) are 
the electron, the positron, and the neutrino as an elementary con-
stituent of the photon.  Subatomic particles like the proton, neu-
tron, and photon are named complex BSPs. 

2. Space Distribution of the Energy of Basic 
Subatomic Particles 

The total energy of a basic subatomic particle (BSP) with con-
stant v c  is 
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The total energy = eE E  is split in 
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Differential emitted edE  and regenerating sdE  and ndE  energies 

are defined 
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with the distribution equation 
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The distribution equation d  gives the part of the total energy of 
a BSP moving with v c  contained in the differential volume 

= sindV dr rd r d    of a FP.  Note:  In this paper   . 

The differential energies are stored in the longitudinal angu-

lar momentum ˆ=e e eJJ s


 of emitted FPs and in the longitudinal 

ˆs sJJ s


 and transversal ˆn nJJ n


 angular momentum of regen-

erating FPs. 
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Fig. 1.  Unit vector ˆes  for an emitted FP and unit vectors ŝ  and 

n̂  for a regenerating FP of a BSP moving with v c . 

The rotation sense in moving direction of emitted longitudi-
nal angular momentum eJ


 defines the sign of the charge of a 

BSP.  Rotation sense of eJ


 and sJ


 are always opposed.  The di-

rection of the transversal angular momentum nJ


 is the direction 

of a right screw that advances in the direction of the velocity v  
and is independent of the sign of the charge of the BSP.  The con-
cept is shown in Fig. 1. 

Conclusion:  The elementary charge is replaced by the energy 
(or mass) 0.511 MeVeE   of a resting electron.  The charge of a 

complex BSP (e.g. proton) is given by the difference between the 

constituent numbers of BSPs with positive ( )
e
J


 and negative 
( )
e
J


 which integrate the complex BSP, multiplied by the energy 

of a resting electron.  As examples we have for the proton with 

919n   and 918n   with a binding energy of -protBE   

0.43371 MeV  a charge of   0.511 0.511 MeVn n    , and for 

the neutron with 919n   and 919n   and a binding energy of 

-neut 0.34936 MeVBE   a charge of   0.511 0.0 MeVn n    . 

The unit of the charge thus is the Joule (or kg).  The conver-
sion from the electric current cI  (Ampere) to the mass current 

mI  is given by 

 12 kg
5.685631378 10

sm c c
m

I I I
q

  
    

 
 (5) 

where m is the electron mass in kilogram and q  the elementary 

charge in Coulomb. 

Note: The Lorentz invariance of the charge in today's theory 
is equivalent to the invariance of the difference between the con-

stituent numbers of BSPs with positive ( )
e
J


 and negative ( )
e
J


 

which integrate the complex BSP, multiplied by the energy of a 
resting electron.  In the present paper the denomination charge 
will be used according to the previous definition. 

3. Definition of Field Magnitudes sdH and ndH  

The field dH  at a point in space is defined as part of the 
square root of the energy of a BSP, part defined by the distribu-
tion equation d  which is related to the volume 

= sindV dr rd r d    of a FP (see also Eq. (2)).  For the emitted 

field we have 

 2ˆ ;e e e e ed H d H E H s


 . (6) 

The longitudinal component of the regenerating field at a point 
in space is defined as 
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The transversal component of the regenerating field at a point in 
space is defined as 
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The total field magnitude eH  is 

 2 2 2 2;e s n e eH H H H E    . (9) 

The vector ˆes  is a unit vector in the moving direction of the 

emitted FP.  The vector ŝ  is a unit vector in the moving direction 
of the regenerating FP.  The vector n̂  is a unit vector transversal 
to the moving direction of the regenerating FP and oriented ac-
cording the right screw rule relative to the velocity v


 of the BSP. 

Conclusion: BSPs are structured particles with emitted and 
regenerating FPs with longitudinal and transversal angular mo-
mentum.  The rotation sense of the angular momentum of the 
emitted FPs defines the sign of the charge of the BSP, and the 
transversal angular momentum of the regenerating FPs define 
the mechanical and magnetic moments. 
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4. Interaction Laws for Field Components and 
Generation of Linear Momentum 

The interaction laws for the field components sdH


 and ndH


 

are derived from the following interaction postulates for the lon-
gitudinal sJ


 and transversal nJ


 angular momentum. 

1. If two fundamental particles from two static BSPs cross, their 
longitudinal rotational momentum sJ  generate the following 

transversal rotational momentum (sg=signum): 

    ( )
1 21 2 1 21

ˆ ˆsg sgs
s s s sn J J    

 
J J J s s
  

. (10) 

If both sides of Eq. (10) are multiplied with 11s
d   and 

22s d  , with s  the rotational frequency, results the differ-

ential energy 

 ( )
1 1 2 21 1 2 21

ˆ ˆs
s s s sndE J d J d    s s , (11) 

or 

 ( )
1 21 21

ˆ ˆ ˆ ˆ,s
s s s i s s i in i i i

dE dH dH dH J d   s s s s . (12) 

If at the same time two other fundamental particles from the 
same two static BSPs generate a transversal rotational mo-

mentum ( )

1

s
nJ


, so that the components of the pair are equal 

and opposed, the generated linear momentum on the two 
BSPs is 

 ( ) ( )
1 21 2

1 2

1 ˆ ˆ;s s
p p s s

r rr r

d p d E d E d H d H
c

 
   s s . (13) 

2. If two fundamental particles from two moving BSPs cross, 
their transversal rotational momentum nJ  generate the fol-

lowing rotational momentum (sg=signum): 

    ( )
1 21 1 2 1 2

ˆ ˆsg sgn
s s n nJ J    

 
J J J n n
  

. (14) 

If both sides of the equation are multiplied with 11n d   and 

22n d  , with n  the rotational frequency, and the absolute 

value is taken, it is 

 ( )
1 21 1 2

ˆ ˆ ˆ ˆ,n
n n n i n n i ii i i

dE dH dH dH J d   n n n n . (15) 

If at the same time two other fundamental particles from the 
same two moving BSPs cross, and their transversal rotational 

momentum generate a rotational momentum ( )
1

nJ


, so that 

the components of the pair are equal and opposed, the gener-
ated linear momentum on the two BSPs is 

 ( ) ( )
1 21 2

1 2

1 ˆ ˆ;n n
p p n n

r rr r

dp dE dE dH dH
c

 
   n n . (16) 

3. If two fundamental particles with opposed angular momen-
tum from a moving BSP cross with regenerating fundamental 

particles of a static or probe pBSP , the opposed angular mo-

mentum of the moving BSP are appropriated by the regener-
ating fundamental particles of the static pBSP , generating 

opposed linear momentums on the two BSPs (Fig. 14). 

5. Fundamental Equations for the Calculation 
of Linear Momentum between Subatomic 
Particles 

The Fundamental equations for the calculation of linear mo-
mentum according to the interaction postulates of Section 4 are: 

a. The equation for the calculation of linear momentum between 
two static BSPs according postulate (1) is 

 1 2
stat 1 1 2 2

1 2

ˆ ˆ( )1ˆ ˆ
2

e s
R e r s r R

R r r

d
dp H d H d

c R
 



      
  

  
l s s

s s



 , (17) 

where 
1 1 1e r eH d s  is the longitudinal field of the emitted FPs 

of particle 1  and 
2 2 2

ˆs r sH d s  is the longitudinal field of the 

regenerating FPs of particle 2 .  The unit vector ˆRs  is orthog-

onal to the plane that contains the closed path with radius R . 
The linear momentum generated between two static BSPs 

is the origin of all movements of particles.  The law of Cou-
lomb is deduced from Eq. (17) and because of its importance 
is analyzed in chapter 6. 

b. The equation for the calculation of linear momentum between 
two moving BSPs according to postulate (2) is 

 
 1 2

dyn 1 1 2 2
1 2

ˆ ˆ1ˆ ˆ
2R n r n r R

R r r

d
dp H d H d

c R
 



      
  

  
l n n
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 , (18) 

where 11 1
ˆn rH d n  is the transversal field of the regenerating 

FPs of particle 1 and 22 2
ˆn rH d n  is the transversal field of the 

regenerating FPs of particle 2. 
The laws of Lorentz, Ampere and Bragg are deduced from 

equation (18). 
c. The equations for the calculation of the induced linear mo-

mentum between a moving and a static probe pBSP  accord-

ing to postulate (3) are 

 ( )
ind

ˆ1ˆ ˆ
2

s
R s r s r Rr p pR r rr p

d
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 ( )
ind

ˆ1ˆ ˆ
2

n
R n r s r Rr p pR r rr p
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dp H d H d

c R
 



     
  

  l n
s s



 . (20) 

The upper indexes ( )s  or ( )n  denote that the linear momen-

tum ( )
inddp   on the static probe pBSP  (subindex ps ) is induced by 

the longitudinal ( )s  or transversal ( )n  field component of the 

moving BSP. 
The Maxwell and the gravitation laws are deduced from 

equations (19) and (20).  The total linear momentum for all equa-
tions is given by 



Albuquerque, NM 2012 PROCEEDINGS of the NPA  131 

 ˆRdp


 p s


, (21) 

where 
  symbolizes the integration over the whole space. 

Conclusion: All forces can be expressed as rotors from the 
vector field dH  generated by the longitudinal and transversal 
angular momentum of the two types of fundamental particles 
defined in chapter 1. 
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6. Analysis of Linear Momentum between Two 
Static BSPs 

In this section the static Eq. (17) is analyzed in order to ex-
plain 

 why BSPs of equal sign don't repel in atomic nuclei, 
 how gravitation forces are generated, 
 why atomic nuclei radiate. 

Although the analysis is based only on the static Eq. (17) for 
two BSPs, neglecting the influence of the important dynamic Eq. 
(18) that explains for instance the magnetic moment of nuclei, it 
shows already the origin of the above listed phenomena. 

With the integration limits shown in Fig. 2 

1 2

d

min�

max�

1or
2or

1r2r
�

 

Fig. 2.  Integration limits for the linear momentum calculation be-
tween two static basic subatomic particles at the distance d . 

Considering that for static BSPs it is 
1 2

= =o o or r r  and 

1 2= =m m m , the integration limits are 

 2 2
min max minarcsin , , foro

o o
r

d r r
d

         (23) 

 2 2
min max minarccos , , for

2 o o
o

d
d r r

r
         (24) 

and Eq. (17) transforms to 

  
2

1 2 3max max
stat 1 2 2 12

1 2min min

sin
4

omcr
p d d

d

 

 
      . (25) 

The double integral becomes zero for 0d   because the inte-
gration limits approximate each other taking the values 

min 2   and max 2  .  For od r  the double integral be-

comes a constant because the integration limits tend to min 0   

and max  . 

Fig. 3 shows the curve of Eq. (17) where five regions can be 
identified with the help of od r   from the integration limits: 

1. From 0 0.1  , where stat 0p  . 

2. From 0.1 1.8  , where 2
statp d . 

3. From 1.8 2.1  , where stat constp  . 

4. From 2.1 518  , where stat
1

p
d

 . 

5. From 518    , where stat 2
1

p
d

 . 
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Fig. 3.  Linear momentum statp  as function of = / od r  be-

tween two static  BSPs with maximum at = 2 . 

The first and second regions are where the BSPs that form 
the atomic nucleus are confined and in a dynamic equilibrium. 
BSPs of different signs of charge don't mix in the nucleus because 
of the different signs their longitudinal angular momentum of 
the emitted FPs have. 

For BSPs that are in the first region, the attracting or repelling 
forces are zero because the angle   between their longitudinal 
rotational momentum is 1 2         .  BSPs that migrate 

outside the first region are reintegrated or expelled with high 
speed when their FPs cross with FPs of the remaining BSPs of the 
atomic nucleus because the angle   . 

Fig. 4 shows two neutrons where at neutron 1  the migrated 
BSP ’ b ’ is reintegrated, inducing at neutron 2  the gravitational 
linear momentum according postulate 3) of Section 4. 

At stable nuclei all BSPs that migrate outside the first region 
are reintegrated, while at unstable nuclei some are expelled in all 
possible combinations (electrons, positrons, hadrons) together 
with neutrinos and photons maintaining the energy balance. 
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Fig. 4.  Transmission of momentum dp  from neutron 1 to neutron 2. 

As the force described by Eq. (20) induced on other particles 
during reintegration has always the direction and sense of the 
reintegrating particle (right screw of nJ


) independent of its 

charge, BSPs that are reintegrated induce on other atomic nuclei 
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the gravitation force.  The inverse square distance law for the 
gravitation force results from the inverse square distance law of 
the radial density of FPs which transfer their angular momentum 
from the moving to the static BSPs according postulate 3) of Sec-
tion 4.  Gravitation force is thus a function of the number of BSPs 
that migrate and are reintegrated in the time t  (migration cur-
rent), and the reintegration velocity. 

The third region gives the width of the tunnel barrier through 
which the expelled particles of atomic nuclei are emitted.  As the 
reintegration process of BSPs that migrate outside the first region 
depend on the special dynamic polarization of the remaining 
BSPs of the atomic nucleus, particles are not always reintegrated 
but expelled when the special dynamic polarization is not ful-
filled.  The emission is quantized and follows the exponential 
radioactive decay law. 

The fourth region is a transition region to the Coulomb law. 
The transition value trans 518   to the Coulomb law was deter-

mined by comparing the tangents of the Coulomb equation and 
the curve from Fig. 3.  At trans 518   the ratio of their tangents 

begin to deviate from 1 . 
At the transition distance transd , where trans 518  , the in-

verse proportionality to the distance transd  from the neighbor 

regions must give the same force transF  

 trans 2
trans trans

1 1 FK K
F

t d t d

 
 
 

 , (26) 

with K  and FK  the proportionality factors of the fourth and 

fifth regions. 

The transition distance for a Carbon nucleus 12C  is, with pm  

and nm  the mass of the proton and neutron respectively, 

 
 trans 2

518 9.0724 fm
6

o
o p n

cc
d r

E m m c
    




. (27) 

The fifth region is where the Coulomb law is valid. 

7. Time Quantification and the Radius of BSPs 

The relation between the total force and the linear momentum 
for all the fundamental equations of chapter 5 is given by 

 ˆ , 0R
p

p p p
t


    


F s


, (28) 

with the momentum time t  between the two BSPs defined as 

 4
21 2

s
, 5.4271 10

m
o ot K r r K

      
 

, (29) 

K  is a constant and 
1or and 

2or are the radii of the BSPs. 

The constant K  results when Eqs. (17) and (18) are equalized 
respectively with the Coulomb and the Ampere equations 

 1 2 1 2
stat dyn2

1
,

4 2
o

o

Q Q I I
F F

dd


 

  . (30) 

The radius or  of a particle is given by 

 2 2, foro o p
c

r E E E v c
E

   


, (31) 

and forE v c  , (32) 

and is derived from the quantified far field of the irradiated en-
ergy of an oscillating BSP [6]. 

8. Quantification of Irradiated Energy 

To express the energy irradiated by a BSP as quantified irra-
diation we start with 
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with or  the radius of the moving particle and op
r  the radius of 

the probe particle and 
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We now define eE t  and get 
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an equation that is valid for every speed v  of the BSP, also for 
= 0v  giving 

 20 1

,
1

, 1.2373 10 ,

e o o

o o o
o

E t E t h

E h s
t

  

   

   


 (36) 

where h  is the Planck constant. 
Note: In the equation eE t h   the energy eE  is the total en-

ergy of the moving particle and the differential time t  is the 
time the differential momentum p  is active to give the force 

F p t    between the moving and the probe particle. 

We now define the quantized emission of energy at a BSP de-
fining the power as 

 e
e e o

o

E
P E

t
 


. (37) 

With the equation (36) which states that = =e o oE t E t h   we 

get 
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The emitted and regenerating powers are 

 
,
,
.

e o e e o
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 (39) 

Note: The emitted and regenerating powers have different 
frequencies e , s   and n  , but a common energy quanta oE .  

We also get 
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and conclude that 

 , , ,e e s s n n e s nE h E h E h             , (41) 

with 

 ,dE Ed dH E d H d     , (42) 

and 

 
H

E P
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, (43) 

The equations for the Coulomb, Ampere and induction forces of 
Section 5 can be transformed to 

 1 2
1 2

1 2

1ˆ ˆ ˆ=R R r r R
R r ro o o

d p H H
d F d d
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  s s s , (44) 

and expressed as a function of the powers of the interacting BSPs 

 1 21 2
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1
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with 
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The differential energy fluxes are 
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and with 

 2

2

1
= sin

2 2
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or d
d dr d and

r
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The concept is shown in Fig. 5. 
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Fig. 5.  Emitted Energy flux density dS  of a moving electron 

we define the differential energy flux density as 

 
4 2

1
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4
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o
rdP J

dS E dr
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. (49) 

The cumulated differential energy flux density is 

 3 2
1 1

= =
12

o
o

r r

r J
dS dP E

dA r m s




 
  . (50) 

Note: The differential energy flux density is independent of 
  and   and therefore independent of the direction of the speed 
v .  This is because of the relativity of the speed v  that doesn't 
define who is moving relative to whom. 

9. Ampere Bending (Bragg’s Law) 
From Section 4 we have that the momentum dp  generated 

between two moving BSPs due to the interaction of their trans-
versal angular momentum is 

 1 21 2
1 2

1 ˆ ˆ= n n
r rr r

d dH dH
c

 
 p n n


. (51) 

The Bragg equation is now deduced from the equation of the 
force density between two parallel conductors [6] 

 
 2 2

2 1 1 21 2 max max
1 2

1 22 1min min

1 sin
64 sin sin
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o

I IrF
d d
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    (52) 

with = 5.8731 . 

Eq. (52) results from Eq. (18) of Section 4 when applied to two 
parallel conductors with mass currents 

1mI  and 
2mI , where for 

v c  

 2, ,x
m x x o o

N
I mv t Kr

x
    


. (53) 

The linear density x  is defined as the number xN  of BSPs 

per length x  of the conductor.  The relation between the mass 
current mI  and the electric current cI  is given by 

 12 kg
5.685631378 10

sm c c
m

I I I
q

  
    

 
, (54) 

with m  the electron mass in kilogram and q  the elementary 

charge in Coulomb. 
The BSPs that interact now trough their transversal angular 

momentum are the moving BSP and the parallel reintegrating 
BSP of a nucleon described in Section 6. Fig. 6 shows the concept. 
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Fig. 6.  Bending of BSPs 

We get with 
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the bending momentum p , 

 1 21 5.8731
4 64

m v m v
p l

c d
  , (56) 

and with 2
n n nE h H m v m v     we get 

 1 21 5.8731
4 64

n nh
p l

c d

 
  . (57) 

The concept is shown in Fig. 7. 
From Section 8 we have that 
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, (58) 

and we get 
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  . (59) 

For the moving BSP we have, that 1l v t    and the product 

1 1n nE t H t m l       is independent of the velocity 1v  for a 

given l .  The increase of 
1nH  with the speed 1v  is compen-

sated by the reduction of the time t  the moving BSP remains 
in l , reducing proportionally the number of fundamental parti-
cles emitted by the moving BSP that can interact with fundamen-
tal particles of the reintegrating BSP, while moving through l . 
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Fig. 7.  Geometric relations for single moving BSPs. 

We know that the bending is quantized and we introduce in 
the equation the quantization of the energy making 

1 2n n oE E E   and we get 
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c d


  , (60) 

where n  gives the number of energy quanta of oE  interchanged 

between the two BSPs. 
If we now write the bending equation with the help of tan   

2sin  for small   we get 
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sin
2 4 64 2

b o
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and with 2 Ad d , where Ad  is the interatomic distance, we get 
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2 2 64 2
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p h
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, (62) 

which is the Bragg equation except for the proportionality factor 
which can be adapted to the Bragg equation through the distance 

l  which we assume is constant. 
The Bragg equation is 

 sin
2 i A

h
n

p d
  , (63) 

resulting for l  with 20 -11.2373 10 so    

 1164
2 5.2843 10 m

5.8731 o

c
l


    , (64) 

which is in the order of interatomic distances that are constant 
for each electron diffraction experiment. 

Conclusion: We have derived the Bragg equation without the 
concept of particle-wave introduced by de Broglie.  Numerical 
results obtained using the quantized irradiated energy instead of 
the particle-wave are equivalent, different is the physical inter-
pretation of the underlying phenomenon. 

10. BSP with Light Speed 

BSPs with speeds v c  emit and are regenerated continuous-
ly by fundamental particles that have longitudinal and transver-
sal angular momentums.  With v c , Eq. (7) becomes zero and 
so the longitudinal field sdH  and the corresponding angular 

momentum sJ


.  According Eq. (8) only the transversal field ndH


 

and the corresponding angular momentum nJ


 remain.  With 

v c , the BSP reduces to a pair of FPs with opposed transversal 

angular momentums nJ


, with no emission (no charge) nor re-

generation. 
The concept is shown in Fig. 8. 
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Fig. 8.  Different forms of BSP with light speed. 
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Fig. 8 shows at a) a BSP with parallel cp


 linear momentum 

and at b) with transversal c
p


 linear momentum.  At c) a possible 

configuration of a photon is shown as a sequence of BSPs with 

light speed with alternated transversal linear momentums c
p


, 

which gives the wave character, and intercalated BSPs with lon-

gitudinal momentums cp


 that gives the particle character to the 

photon. 
Conclusion: BSPs with light speed are composed of pairs of 

FPs with opposed angular momentum nJ


, they don't emit and 

are not regenerated by FPs.  They are not bound to en environ-
ment that supplies continuously FPs to regenerate them.  The 
potential linear momentum cp


 of each pair of opposed angular 

momentum can have any orientation relative to the speed c


.  
BSPs with light speed can be identified with the neutrinos. 

10.1. Ampere Bending of BSPs with Light Speed 

The bending mechanism for BSPs with light speed at a static 
matter is in this case the same as for the bending of BSPs with 
speed v c .  In both cases the Ampere law is responsible for 
bending according postulate 2) of Section 4. 
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Fig. 9.  Bending mechanism for a BSP with light speed. 

In Fig. 9 we see that the complex BSP with light speed is com-
posed of BSPs with potential linear momentum yp  oriented in 

moving direction and linear momentum zp  in orthogonal direc-

tion.  The linear momentum yp  is responsible for the particle 

character of the complex BSP and the linear momentum zp  is 

responsible for the wave character of the complex BSP.  The in-
teraction according postulate 2)  of Section 4 between the trans-

versal angular momentum of the “particle-component” of the 
complex BSP with light speed and the transversal angular mo-
mentum of the regenerating BSPs of the matter, is responsible for 
bending.  The bending direction is attractive or repulsive accord-
ing to the relative directions of the complex BSP with light speed 
and the regenerating BSP. 

The deduction of the Bragg equation for BSPs with light 
speed we get in changing the sub-index 1  by the sub-index c  in 
the corresponding equations of Section 9. 

Conclusion: The energy of the regenerating BSP increases in 
the same amount the energy of the BSP with light speed decreas-
es.  A complex BSP with light speed always loses energy when it 
is bent. 

10.2. Induction Bending of a Photon 

According postulate 3) of Section 4, pairs of regenerating FPs 
with longitudinal angular momentum from a BSP can absorb  
opposed pairs of transversal angular momentum from another 
BSP.  As photons have no regenerating FPs they can only leave 
pairs of transversal angular momentum to other BSPs and lose 
energy.  BSPs that appropriate opposed transversal angular mo-
mentum from photons can be static, moving or accelerated BSPs. 

10.3. Red Shift of a Photon 

The energy exchanged between a photon and a bending elec-
tron is 
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The frequency shift of the photon is with =i a bE E E  
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The concept is shown in Fig. 10. 
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Fig. 10.  Vector diagram for the bending of particles. 

Conclusion: Photons that are bent lose energy and their fre-
quencies are shift to the red.  Light that comes from far galaxies is 
bent by cosmic matter during the trajectory to earth resulting in a 
red shift approximately proportional to the distance between 
galaxy and earth.  The red shift is not the result of an expansion 
of the universe (Big Bang). 

11. Conventions introduced for BSPs 

Fig. 11 shows the convention used for the electrons and posi-
trons.  The accelerating positron emits FPs with high speed 

ev    and positive longitudinal angular momentum s
J


 (  ) 

and is regenerated by FPs with low speed =rv c  and negative 

longitudinal angular momentum s
J


 ( c  ).  The decelerating 

electron emits FPs with low speed =ev c  and negative longitu-

dinal angular momentum s
J


 ( c  ) and is regenerated by FPs 
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with high speed =rv   and positive longitudinal angular mo-

mentum s
J


 (  ).  The emitted FPs of the accelerating positron 

regenerate the decelerating electron and the emitted FPs of the 
decelerating electron regenerate the accelerating positron. 

BSPngAccelerati

BSPngDecelerati

BSPPositive BSPNegative

BSPNegativeBSPPositive  

Fig. 11.  Conventions for BSPs. 

Fig. 12 shows a neutron and a proton with the rays for emit-
ted and regenerating FPs.  The complex BSPs are formed of ac-
celerating positrons and decelerating electrons. 
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Fig. 12.  Neutron and proton  composed of accelerating positrons 
and decelerating electrons. 

Fig. 13 shows a neutron with one migrated BSP and the corre-
sponding leaking fields. 
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Fig. 13.  Neutron with migrated BSP. 

12. Mechanism of Elastic and Destructive Scat-
tering of Particles 

In the present approach the energy of a BSP is distributed in 
space around the radius of the BSP.  The carriers of the energy 
are the FPs with angular momentum, FPs that are continuously 
emitted and regenerate the BSP.  At a free moving BSP each an-
gular momentum of a FP is balanced by another angular momen-
tum of a FP of the same BSP. 

At Fig. 14 the opposed transversal angular momentum ndH


 

at point P  and nd H


 at point P  from two FPs that regenerate 

the BSP produce the linear momentum p


 of the BSP.  If a second 

static probe pBSP  appropriates with its regenerating angular 

momentum sp
dH


 angular momentum ndH


 from FPs of the first 

BSP according postulate 3)  of Section 4, angular momentum that 

built a rotor different from zero in the direction of the second 

pBSP  generating ip
dp


, the first BSP loses energy and its linear 

momentum changes to ip
dp p

 
.  The angular momentum ap-

propriated at point P  by the probe pBSP  generating the linear 

momentum ip
dp


 are missing now at the first BSP to compensate 

the angular momentum at the symmetric point P .  The linear 
momentum at the two symmetric points are therefore equal and 
opposed i ip

d d  p p
 

 because of the symmetry of the energy 

distribution function    d d      . 
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Fig. 14.  Linear momentum balance between static and moving BSPs. 

As the closed linear integral nd d H l


  generates the linear 

momentum p


 of a BSP, the orientation of the field ndH


 (right 

screw in the direction of the velocity) must be independent of the 

sign of the BSP, sign that is defined by ( )
e
J


. 

In a complex BSP formed by more than one BSP, a mutual re-

generation between the BSPs exists.  The emitted positive ( )
e
J


 of 

the positive BSPs regenerate the negative BSPs, and the emitted 

negative ( )
e
J


 of the negative BSPs regenerate the positive BSPs. 

BSPs that have no opposed pairs inside the nucleus emit their 
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FPs with the longitudinal angular momentums ( )
eJ   generating 

dH  fields beyond the radius of the nucleus.  Opposed angular 

momentums of the dH


 field beyond the radius are responsible 
for the “electromagnetic” interactions. 

12.1. Elastic Scattering 

Elastic scattering occurs “electromagnetically” beyond the ra-
dius or  of the nucleus, and “mechanically” at the radius or . 

Elastic electromagnetic scattering occurs when charged (differ-
ence between the constituent numbers of BSPs with different 
sign) complex BSPs interact without entering in mechanical con-
tact.  Interactions are limited to the interactions of their fields 
beyond the radius or  of the particles.  The complex particles 

maintain the internal distribution of their BSPs and, because of 
the weak accelerations, the internal mutual regeneration between 
the BSPs that form the complex particles is not disturbed. 

Elastic mechanic scattering occurs when complex particles enter 
in mechanical contact maintaining the internal distribution of 
their BSPs, but the acceleration is already strong enough to dis-
turb the internal mutual regeneration between the BSPs.  The 
angular momentum of the pairs of BSPs are not more compen-
sated inside the nucleus and each BSP of the complex BSP inter-
changes opposed angular momentums with the scattering part-
ner. 

12.2. Plastic or Destructive Scattering 

Plastic or destructive scattering we have when distances be-
tween the scattering partners are smaller than or .  The internal 

distribution of the BSPs is modified and the acceleration disturbs 
the internal mutual regeneration between the BSPs.  The angular 
momentum of each BSP of the scattering partners interact heavi-
ly, and new basic configurations of angular momentum are gen-
erated, configurations that are balanced or unbalanced (stable or 
unstable). 

In today's point-like representation the energy of a BSP is 
concentrated at a point and scattering with a second BSP requires 
the emission of a particle (gauge bosons) to overcome the dis-
tance to the second BSP, that then absorbs the particle.  The ener-
gy violation that results in the rest frame is restricted in time 
through the uncertainty principle and the maximum distance is 
calculated assigning a mass to the interchanged particle (Feyn-
man diagrams). 

Conclusion: In the present approach the emission of FPs by 
BSPs is continuous and not restricted to the instant particles are 
scattered.  In the rest frame of the scattering partners no energy 
violation occurs.  When particles are destructively scattered, dur-
ing a transition time the angular momentum of all their FPs in-
teract heavily according the three interaction postulates defined 
in chapter 4 and new basic arrangements of angular momentum 
are produced, resulting in balanced and unbalanced configura-
tions of angular momentum that are stable or unstable, configu-
rations of quarks, hadrons, leptons and photons.  The interacting 
particles (force carriers) for all types of interactions (electromag-
netic, strong, weak, gravitation) are the FPs with their longitudi-
nal and transversal angular momentums. 

13. Dark Matter 

In Section 6 we have seen that the origin of the gravitation 
force is the induced force due to the reintegration of migrated 
BSPs in the direction of the two gravitating bodies.  When a BSP 
is reintegrated to a neutron, the two BSPs of different signs that 
interact produce an equivalent current in the direction of the pos-
itive BSP as shown in Fig. 15. 
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Fig. 15.  Resulting current due to reintegration of migrated BSPs. 

As the numbers of positive ( R
 ) and negative ( R

 ) BSPs that 

migrate in one direction at one neutron are equal, no average 
current should exists in that direction in the time t .  It is 

 = = 0R R R
     . (67) 

We now assume, that because of the energy interchange be-
tween the two neutrons [6], a synchronization exists between the 
reintegration of BSPs of equal sign in the orthogonal direction of 
the two neutrons, resulting in parallel currents of equal signs that 
generate an attracting force between the neutrons.  Thus the re-
sulting attractive force between the two neutrons is produced by 
two components: 

• the induced force GF  due to the reintegration of BSPs in 

the direction of the two neutrons as described in Section 6 
and shown in Fig. 4 and 

• the force RF  due to the reintegration of BSPs of equal sign 

in the orthogonal direction of the two neutrons resulting 
in parallel currents. 

 1 2 1 2
2, ,T G R G R

M M M M
F F F F G F R

dd
    , (68) 

where 11 3 26.6726 10 m kg-sG   . 

To obtain an equation for the force RF , we start with Eq. (60) 

from Section 9, which was calculated for one pair of BSPs 
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The force for one pair of BSPs is given by 
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The total force is 
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We get 
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and 

 R RM  . (76) 

The total attraction force gives 
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. (77) 

For sub-galactic distances the induced force GF  is predomi-

nant, while for galactic distances the force of parallel reintegrat-
ing BSPs RF  predominates, as shown in Fig. 16. 
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Fig. 16.  Gravitation forces at sub-galactic and galactic distances. 

13.1. Calculation Example 

For the sun with orb 220 km sv  , 30
2 sun 2 10 kgM M   , 

and a distance to the core of the Milky Way of 1925 10 md   , 

we get a centrifugal force of 

 
2

20orb
2 3.872 10 Nc

v
F M

d
   . (78) 

With the mass of the core of the Milky Way of 
6

1 sun4 10M M   and assuming that T R CF F F    we get that 

 27 21 2 , 6.05 10 N-m kgC
M M

F R R
d

   . (79) 

To calculate gald  we write 

 16
gal, 1.103 10 mG R

G
F F d

R
    , (80) 

which justifies our assumption for c RF F  because the distance 

between the sun and the core of the Milky Way is gald d .  We 

also have that 

 7 -1

Dark
3.842 10 kgR

R
K

    . (81) 

Conclusion: The gravitation force is composed of an induced 
component and a component due to parallel currents of reinte-
grating BSPs.  For galactic distances the induced component can 
be neglected, leaving the component generated by parallel cur-
rents, responsible for the flattening of galaxy rotation curves. 

Note: We also may assume that the synchronization of the re-
integrating BSPs in the orthogonal direction of the two neutrons 
results in parallel currents of opposed signs, generating a repul-
sive force between the two neutrons. 

14. The Stern-Gerlach Experiment and the Spin 
of the Electron 

According to the present theory, the bending force on the va-
lence electron of the Atom at the Stern-Gerlach experiment is the 
force deduced at Section 9 for Ampere bending with v c  
(Bragg bending). 

We start with Eq. (60) 
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and with = b
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t
 we get 
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The deduced bending force is inverse proportional to the dis-
tance d  and independent of the intensity of the magnetic field 
H .  At each Stern Gerlach experiment the distance d  is constant 
resulting the splitting of the ray of atoms, which in standard the-
ory is attributed to the two states 2h  of the electron spins. 

In what follows we will show that in the experiment of Stern-
Gerlach the ray of atoms must cross a region of the magnetic field 
where the gradient is strong to properly work. 
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Fig. 17.  Geometric relations for the magnetic field zH  generated 

with  two parallel conductors with opposed currents. 
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We analyze the geometric configuration of Fig. 17, where 
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1. With z D  we get 
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resulting in a homogeneous field 
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2. With z D  we get 
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The gradient is 
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, (88) 

which means that the field is inhomogeneous. 
Conclusion: From Fig. 17 we see that to get opposed bending 

forces 
1bF  and 

2bF  it is necessary that z>>D as deduced in case 

b), what implies a strong gradient of the magnetic field.  With the 
homogeneous magnetic field of case a) the bending forces are 
nearly parallel and the ray of atoms is not split.  Important to 
note is that the bending forces are independent of the intensity of 
the magnetic field and that they are not the result of the existence 
of a magnetic moment   associated with the spin of the electron. 

15. Spin of Level Electrons and the Formation 
of Elements 

In Section 11 two types of electrons and positrons were identi-
fied according the velocities of their regenerating and emitting 
fundamental particles; they were named accelerating and decel-
erating BSPs. 

We know that the two electrons in any individual orbit must 
have opposed spins.  This is interpreted in the present model that 
the two electrons in any individual orbit must be of the opposed 
type, namely, accelerating and decelerating electrons. 

For each type of level electron, a corresponding opposed type 
of positron must exist in the atomic nucleus to allow that the 
emitted fundamental particles of one can regenerate the other.  
This leads to the conclusion, that protons and neutrons are also 
composed of BSPs of different types. 

The concept is shown in Fig. 18. 
Proton: Composed of 918  electrons and 919  positrons.  The 

918  electrons are composed of 459  accelerating and 459  decel-
erating electrons.  The 919  positrons are composed of 459  accel-
erating, 459  decelerating and 1  acc/dec positrons. 

Neutron: Composed of 919  electrons and 919  positrons.  
The 919  electrons are composed of 459  accelerating, 459  decel-
erating and 1  acc/dec electrons.  The 919  positrons are com-
posed of 459  accelerating, 459  decelerating and 1  dec/acc pos-
itrons. 
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Fig. 18.  Level electrons of Hydrogen and Helium Atoms. 

16. Findings of the Proposed Approach 

The main findings of the proposed model [6], from which the 
present paper is an extract, are: 

 The energy of a BSP is stored in the longitudinal angular 
momentum of the emitted fundamental particles.  The rota-
tion sense of the longitudinal angular momentum of emitted 
fundamental particles defines the sign of the charge of the 
BSP. 

 All the basic laws of physics (Coulomb, Ampere, Lorentz, 
Maxwell, Gravitation, bending of particles and interference of 
photons, Bragg) are derived from one vector field generated 
by the longitudinal and transversal angular momentum of 
fundamental particles, laws that in today's theoretical physics 
are introduced by separate definitions. 

 The interacting particles (force carriers) for all types of inter-
actions (electromagnetic, strong, weak, gravitation) are the 
FPs with their longitudinal and transversal angular momen-
tums. 

 Quantification and probability are inherent to the approach. 
 The incremental time to generate the force out of linear mo-

mentum is quantized. 
 The emitted and regenerating energies of a BSP are quantized 

in energy quanta  2
oE mc . 

 Gravitation has its origin in the induced momentum when 
BSPs that have migrated outside the nucleons are reintegrat-
ed. 

 The gravitation force is composed of an induced component 
and a component due to parallel currents of reintegrating 
BSPs.  For galactic distances the induced component can be 
neglected explaining the flattening of galaxies´ rotation curve 
(dark matter). 

 The photon is a sequence of BSPs with potentially opposed 
transversal linear momentum, which are generated by trans-
versal angular momentum of FPs that comply with specific 
symmetry conditions. 

 The magnetic spin moment s  that is responsible for the 

splitting of the atomic beam in the Stern-Gerlach experiment 
is replaced by the quantized bending moment of parallel cur-
rents of electrons. 
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 The two possible states of the electron spin are replaced by 
the two types of electrons defined by the present theory, 
namely the accelerating and decelerating electrons. 

 Permanent magnets are explained through closed energy 
flows stored in transversal angular momentums of FPs. 

 The addition of a wave to a particle (de Broglie) is effectively 
replaced by a relation between the particles radius and its en-
ergy.  Deflection of particles such as the electron is now a re-
sult of the quantified bending linear momentum between 
BSPs. 

 The uncertainty relation of quantum mechanics form pairs of 
canonical conjugated variables between “energy and space” 
and “momentum and time”.  The general Schrödinger equa-
tion is replaced by a differential equation where the wave 
function is differentiated two times towards time and one to-
wards space. 

 The new quantum mechanics theory, based on wave func-
tions derived from the radius-energy relation, is in accord-
ance with the older quantum mechanics theory based on the 
correspondence principle. 

 The present approach has no energy violation in a virtual 
process at a vertex of a Feynman diagram. 

 As the model relies on BSPs permitting the transmission of 
linear momentums at infinite speed via FPs, it is possible to 
explain that entangled photons show no time delay when 
they change their state. 
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