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In this three part investigation we provide the mathematical foundations and principles of a frame indif-

ferent classical electromagnetic field theory (FIEFT) for arbitrarily moving material media with arbitrary consti-
tution based on convective and comoving time derivative operators. Part 1 is devoted to the mathematical tools 
utilized in establishing the field theory. It starts with the description of material points in arbitrary Euclidean 
motion, which is a characteristic of rigid (non-deforming) bodies and incompressible inhomogeneous fluids in 
continuum mechanics.  Next we establish the mathematical link between spatial and time derivatives of vector 
fields between Eulerian and Lagrangian frames via coordinate transformations in Euclidean space.  Regarding 
the images of time derivatives of field quantities, we necessarily invoke the convective and comoving time de-
rivatives.  We also provide a proof of the representation of the comoving time derivative for scalar and vector 
density fields along with its certain differential, commutative and integral properties.  In Part 2 we provide the 
axiomatic structure of our field theory where the frame indifferent  electromagnetic field equations are obtained 
directly as images of Maxwell equations of stationary media under Euclidean (aka observer) transformations.  
The commutative properties derived between spatial differential and comoving time derivative operators help 
us derive progressive wave equations for the two standard (translational and rotational) types of Euclidean mo-
tion. In Part 3 we describe the general formulation of a boundary value problem for an arbitrarily moving object 
and investigate three canonical problems of practical interest to demonstrate the predictions of FIEFT. 

 

1. Introduction 

The present three part investigation is a preliminary attempt 
to provide the mathematical foundations and principles of a 
frame indifferent electromagnetic field theory (FIEFT) of bodies 
in arbitrary motion. Since the theory is based on the tools and 
concepts from continuum mechanics, we adopt a tutorial style 
aiming readers from electrical engineering community with no 
background in that discipline. 

Part 1 is devoted to the kinematical aspects, descriptions and 
various properties of progressive (convective and comoving time 
derivative) operators acting on field quantities described in arbi-
trarily moving material media. We start with the description of 
material points in arbitrary motion followed by establishing the 
mathematical link between spatial and time derivatives of vector 
fields between Eulerian and Lagrangian frames via Euclidean 
(aka observer) transformations. Regarding the images of time 
derivatives of field quantities we necessarily invoke the convec-
tive and comoving time derivatives. The terms Eulerian and 
Lagrangian frames that we adopt in this work are well estab-
lished and called ‘current (or spatial) configuration’ and ‘referen-
tial description’, respectively, in fluid mechanics. We also pro-
vide a detailed proof of the comoving time derivative for scalar 
and vector quantities whereas their various commutative proper-
ties are also introduced for the first time. 

In Part 2 the frame indifferent electromagnetic field equations 
(FIEFE) are obtained directly as images of Maxwell equations of 
stationary media with arbitrary constitution under Euclidean 
transformations. The commutative properties derived for pro-
gressive operators help us derive progressive wave equations for 
media in arbitrary Euclidean motion, which is a characteristic of 

rigid (non-deforming) bodies and incompressible inhomogene-
ous fluids. In Part 3 we describe the general formulation of a 
boundary value problem for an arbitrarily moving object and 
investigate three canonical problems of practical interest to 
demonstrate the predictions of FIEFT. 

The concept of “material frame indifference” (MFI) and the 
debates around its alternative interpretations and correct math-
ematical formulations throughout the history of rational contin-
uum mechanics have been reviewed comprehensively in a recent 
treatise by M. Frewer [1].  The common motive behind alterna-
tives principle of MIF is that “the structural form and physical 
content of any physical law (of continuum mechanics) when sub-
ject to arbitrary coordinate transformations does not depend on 
any mathematical quantities which define the geometrical struc-
ture of the underlying space-time manifold”. The reflection of 
this principle in Euclidean space rests on concepts such as “gen-
eral invariance”, “frame indifference”, “Newtonian space-time”, 
“Euclidean transformations”, while they clearly contradict with 
the alternative worldview introduced by Special Relativity Theo-
ry of Einstein, which respectively favors “general covariance”, 
“form invariance”, “Minkowski space-time”, “Lorentz transfor-
mations”. The projection of the author’s understanding of MFI 
onto the structural form of Maxwell equations of classical elec-
tromagnetism as described in Part 2 is that the frame indifferent 
forms of electromagnetic field equations given in (7.2) are ob-
tained from the Maxwell equations of stationary media in (6.1) by 
a direct substitution of the comoving time derivative operators 
(introduced in Theorems 4 and 5) in Euclidean frame for the par-
tial time derivatives in Lagrangian frame. 

The inspiration behind our present work is the derivation and 
description of the same set of field equations in (7.2) in vacuum 
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conditions by C.I. Christov in his papers [2-3] (see also the recent 
review [4]), where the author postulates a direct correspondence 
between the field quantities of electromagnetism and continuum 
mechanics in the context of a unifying material worldview of 
incompressible viscoelastic ‘meta-continuum’. 

Throughout the text nR  represents n -dimensional Euclidean 

space and we employ the abbreviations ‘E-‘ and ‘L-‘ for the fre-
quently used phrases ‘Eulerian’ and ‘Lagrangian’, respectively.   

PART I: THE MATHEMATICAL TOOLS 

2. The Basics of Motion of a Material System 
Let us consider a material system filling a domain 3D R  

whose material points (or matter particles) are in arbitrary mo-
tion as observed in a reference laboratory (aka E-) frame 

1 2 3Ox x x t  as depicted in Fig. 1. 

 

Fig. 1.  A material medium in arbitrary motion with linear 
velocity v( ; )r t


. 

In E-frame we shall denote the instantaneous coordinates (or 
trajectory) of a material point (or a matter particle) P  by the po-
sition vector 1 2 3( ) ( ), ( ), ( )Pr t x t x t x t   


.  In terms of the arbitrary 

instantaneous velocity vector field v( ; )r t


, the coordinates of the 

matter particles at time t  can be specified through the initial 
(Cauchy) boundary value problem 

 
0 0

/ v( ; )
( )  (fixed)
P P

P

dr dt r t
r t t r


  

 
   (2.1) 

The instantaneous property of the velocity field provides it 
independent of the reference time 0t  (cf [5, Property 1.1]).  Next 

we introduce the local arbitrary curvilinear reference (aka L-) 
frame 1 2 3O x x x t      for any material point P  in which its location, 

say Pr


, is assumed unaltered while the frame is in motion with 

respect to E-frame.  One may refer to [6] regarding the discus-
sions on the construction of Cauchy problems for the instantane-
ous location of material points. 

To emphasize on the distinction between mechanical and rel-
ativistic theories we shall introduce the following postulate re-
garding the two inertial reference frames. 

Postulate 1: Regardless of the arbitrary instantaneous linear velocity 
vector of L-frame with reference to E-frame no time dilation or length 
contraction is assumed in the context of FIEFT between any measure-
ment taken by ideal devices considered fixed in these two frames. 

The postulate of temporal and spatial invariance treats time 
as a nonphysical quantity 

 t t  (2.2a) 

and the Euclidean metric measured in the two reference frames 
as the same.  Mathematically, if 1P  and 2P  are two material 

points with instantaneous Eulerian & Lagrangian position vec-
tors 

1Pr


 & 
1Pr


 and 
2Pr


 & 
2Pr


 in E- & L- frames, then one assumes 

 
1 2 1 2 1 21 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )P P P P P Pr t r t r t r t r t r t         
     

 (2.2b) 

3. The Convective Derivative 
Theorem 1: (Convective Derivative in 3R ) 

Consider an arbitrary field quantity ( ; )g r t


 (scalar, vector or ten-

sor), in an arbitrary medium traveling with a linear instantane-
ous velocity field v( ; )r t


 w.r.t. the E-frame in 3R .  The time rate 

of change experienced in the L-frame is called the ‘convective’ 
(aka L-, substantial, total time, Euler’s material) derivative, and 
has the form 

 ( ; ) ( ; ) v( ; ) grad  ( ; )
D

g r t g r t r t g r t
Dt t


  


   
   (3.1) 

Proof: The convective derivative of an arbitrary field quantity 
( ; )g r t


 in L-frame in 3R  has the form  

 
0

1
( ; ) lim ( ( ); ) ( ( ); )

t

D
g r t g r t t t t g r t t

Dt t 
       

  
 

where ( ) ( ) ( )v( ; )r t t r t t r t    
  

.  The Taylor series of expansion 

of ( ( ); )g r t t t t   


 around ( ( ); )r t t


 can be written as 

 

3

1

( ( ); ) ( ( ); ) ( ) o( )

         ( ; ) v grad  ( ; ) ( ; ) o( )

i

ii

g gx
g r t t t t g r t t t t

x t t

g r t t g r t g r t t
t



            
   
 
         

 

  
 

and placed into the limit definition to yield the desired result. 

3.1.  Certain Differential Properties of the Convective 
Derivative in 3R  

Let c , C


 be constant scalar/vector quantities and the sca-

lar/vector fields ( ; )f r t


, ( ; )g r t


, ( ; )A r t
 

, ( ; )B r t
 

 be of 1
3( )C R .  

Based on the linearity of the convective derivative operator one 
can observe the following properties. 

Property C1: 0
D

c
Dt

  ,   0
D

C
Dt


 

 

Property C2:   DfD
cf c

Dt Dt
  ,    D DA

cA c
Dt Dt




 

Property C3:   Df DgD
f g

Dt Dt Dt
   ,    D DA DB

A B
Dt Dt Dt

  

  
 

Property C4:   Df DgD
fg g f

Dt Dt Dt
   

Property C5:   DfD DA
fA A f

Dt Dt Dt
 

 
 

Property C6:   curl curl
D DA DB

A B B A A B B A
Dt Dt Dt

        

       
 

Property C7:  D DA DB
A B B A

Dt Dt Dt
    

   
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where we incorporate the vector identity  

      grad grad gradA B A B B A    
    

 

Property C8:   1n n DfD
f nf

Dt Dt
 , n  

3.2. Convective Derivative on a Surface 

Let 1 2( , )u u  be the real valued parametric curves of a two-

sided, regular surface ( )S t  described by the position vector 

1 2( , )Sr r u u
 

.  A quantity that assumes one or more definite val-

ues at each point of a surface is called a ‘density function’ for the 
surface.  Let us consider a scalar density function 1 2( , )u u  and a 

vector density function 

 1 2 1 1 2 1 2 1 2 2 1 2ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )nA u u A u u u A u u u A u u n  


   , 

where 1û , 2û  are unit tangent vectors along the curves 

1 const.u   and 2 const.u   and ˆ( )n t  is the unit normal of ( )S t , 

which constitute a right handed system.  Then it can be shown 
that the gradient, divergence and curl operators acting on the 
density functions on a surface are as follows: 
Theorem 2: (Surficial Vector Differential Operators) 

 1 2

1 1 2 2

ˆ ˆ
gradS

u u
h u h u

   
 

 
 (3.2a) 

 2 1 1 2
1 2 1 2

1
div ( ) ( ) 2S nA h A h A A

h h u u

  
      


  (3.2b) 

 
2 2 1 1

1 2 1 2

2 1
1 2

2 1

1 ˆcurl ( ) ( )

ˆ ˆ ˆ                          grad

S

S n

A h A h A n
h h u u

A A
u u A n

 

  
    

   



 (3.2c) 

Here 1h , 2h  are the metric coefficients of the parametric curves; 

the principle radii of curvature 1,2  are related to the metric 

coefficients through 

 1

1 1

1 1 dh
h dn

  , 2

2 2

1 1 dh
h dn

  ; (3.2d,e) 

and 
1 2

1 1 ˆ2 div ( )S n
 

      (3.2f) 

is called the first curvature of ( )S t . A proof of Theorem 2 can be 

seen in [7], [8 Ch. 12] as one of the earliest accounts, where the 
density function is termed as ‘point function’. 

Lemma 1: 1 1 2 2
1 2

1 1ˆ ˆ ˆ ˆ ˆgrad ( )S n u u u u
 

    

Proof:  One substitutes the Gauss-Codazzi formulas (cf. [8, Ch.5]) 

 
 1 2

1 1

1 2 1 1
2 1 2 1

1 1 1 1

ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ0

n
u u

u u
u u h h

u u n u u
u u  

 
 

 
 

        
 

  

 
 1 2

2 2

1 2 2 2
2 1 1 2

2 2 2 2

ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ        0

n
u u

u u
u u h h

u u u n u
u u  

 
 

 
 

        
 

  

in the definition  1 2

1 1 2 2

ˆ ˆ ˆ ˆ
ˆgrad ( )S

u n u n
n

h u h u
 

 
 

 to obtain the de-

sired result directly. 

Corollary 1: (Convective Derivative on a Surface) 
The restriction of the definition of the convective derivative in 

3R  to 2R  directly yields its expression on a surface.  In this case, 

in virtue of (3.2) the time rate of change of a scalar field ( ; )Sf r t


 

or a vector field ( ; )SA r t
 

 defined only on a two-sided, regular 

surface ( )S t  traveling with a linear instantaneous velocity 

v( ; )Sr t


 as experienced in L-frame reads 

 ( ; ) ( ; ) v grad ( ; )S S S S
D

f r t f r t f r t
Dt t


  


  
 (3.3a) 

 ( ; ) ( ; ) v grad ( ; )S S S S
D

A r t A r t A r t
Dt t


  


    
  (3.3b) 

As a result all the properties C1 - C8 also apply for the surficial 
convective derivative in (3.3).   

According to an L-observer the surface is, by definition, at 
rest with a fixed unit normal.  For the E-observer this brings 
along the following property: 

Property C9: 
ˆ

0
Dn
Dt




, t , where ˆ( )n t  is the unit normal of a 

regular surface ( )S t  in arbitrary motion.` 

Then in virtue of Property C5, for an arbitrary scalar point 
function   one reaches at the following property. 

Property C10:  ˆ ˆD D
n n

Dt Dt
   , where ˆ( )n t  is the unit normal of 

a regular surface ( )S t  in arbitrary motion and ( ; )Sr t


 is an 

arbitrary density function. 

The results obtained in this section can also be extended for 
“curvilineal” and convective differential operators for density 
functions defined on space curves, which shall be omitted. 

4. Images under Euclidean Transformations 

Assumption 1: Let the general coordinate transformations be-
tween E- and L- frames be given by the sets 

 ( ; )i i jx f x t   ,   ( ; )i i jx f x t    ,   , 1,2,3i j   (4.1a,b) 

where  ix  and  ix  correspond to the Cartesian E-coordinates 

and to the general curvilinear L-coordinates, respectively.  We 

assume the maps 2
3, ( )i if f C R  bijective, not necessarily linear 

and provide an admissible change of coordinates locally in the 
moving material medium D .  Our current investigation is re-
stricted to Euclidean (aka observer) transformations in the form 

 ( ) ( )r c t Q t r   
  

   ,   ( ) ( )TRr Q t r c t    
  

 (4.2a,b) 

where ( )Q t  is an arbitrary time dependent orthogonal tensor 

with the superscript TR representing its transpose.  Euclidean 
transformation is a generalization of Galilean transformation 
involving time dependence in the translation vector ( )c t


 and the 

rotation matrix ( )Q t .  The orthonormal bases 1 2 3ˆ ˆ ˆ ˆ( , , )r x x x  and 

1 2 3ˆ ˆ ˆ ˆ( , , )r x x x     are also transformed as 
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 ˆ ˆ( )r Q t r    ,   ˆ ˆ( )TRr Q t r   (4.2c,d) 

Assumption 2: Let the linear velocity vector field v( ; )ix t


 of the 

moving material medium be expressible as a contravariant vector 

with contravariant components vi  in  ix  frame. 

This assumption conforms to the nature of the motion of a 
point particle along an arbitrary path. One verification can be 
found at [9, Ex. 3.4]). 

4.1. Special Case 1: Translational Motion 

In this simplest for which each material point in D  has the 
same velocity vector v( ; ) v( )r t t

 
 one may specify the L-frame as 

Cartesian and parallel to E-frame with ˆ ˆi ix x  , 1,2,3i  , which 

reads 

 v ( )
t

i
i ix x d 



     ,  v ( )
t

i
i ix x d 



    (4.3a,b) 

 ˆ ˆv ( ) v( ) v( )i
i it x t x t   
 

 ,  1,2,3i  . (4.3c) 

4.2. Special Case 2: Rotational Motion 

We may consider the medium D  in rotational motion around 

3x  axis with an arbitrary angular velocity ( )t  as depicted in 

Fig. 2.  In this case the instantaneous linear velocity of any mate-
rial point P  can be expressed in cylindrical coordinates 3( , , )x   

with unit vectors 3
ˆˆ ˆ( , , )x   by 

 1 2
ˆ ˆ ˆv( ; )= ( ) ( ) ( ) cossin ( ) ( )r t t t t x xt t         


 (4.4a) 

along with the set of transformations 3 3x x   and 

 1 1

2 2

cos ( )    sin ( )
sin ( ) cos ( ) 

x t xt
x t t x

 
 

     
           

 (4.4b) 

where 

 

0

0( ) ( ) ( )
t

t

t t d        . (4.4c) 

 

Fig. 2.  Rotational motion of an arbitrary material medium 
around a fixed axis with velocity v( ; )r t


.   

Definition 1: (Images of Domains) 
Let the domain occupied by a material system be denoted in 

the general forms   3( ; )| ( ) ( ; ) ( )D r t a t r t b t R      
 

 and 

  3( ; )| ( ) ( ; ) ( )D r t a t r t b t R   
 

 in L- and E-frames, respec-

tively, under the general transformations 

 
( ; )

( ; ) ( ; )
i i jx f x tr t r t   

 
 

   ,   
( ; )

( ; ) ( ; )
i i jx f x t

g r t g r t  
 

 
. 

Then one calls D  (or D ) as the image of D  (or D ) under the 
bijective coordinate transformation if   (or if ) and may express it 

symbolically as  

     fiD D
   ,       fiD D   or simply by     D D  . 

Definition 2: (Objective Fields) 
Let arbitrary (smooth enough) scalar, vector and tensor val-

ued density fields in medium D  be denoted by ( ; )g r t


, ( ; )A r t
 

 

and ( ; )T r t


, respectively. Regarding ( ; )T r t


, we assume it a gen-

eral contravariant tensor of every order.  If these field quantities 
preserve their physical state in both frames of reference, then the 
coordinate transformations in Assumption 1 are called passive 
transformations and the density fields are called objective (or 
frame indifferent) fields.  One may refer to [1, Sect. 6] for further 
information about the classifications of variable transformations.  
In this case the images of the density fields in the L-frame are 
described with the maps 

    
( ; )

( ; ), ( ; ), ( ; ) ( ; ), ( ; ), ( ; )
i i jx f x t

g r t A r t T r t g r t A r t T r t


      
      

 

or symbolically as 

    , , , ,fig A T g A T  
 

 

and vice versa.  In case of Euclidean transformations as in (4.2) 
the exact mathematical relations that ensure the invariance of the 
directions of vector and tensor fields are given by (cf. [10, Sect. 
4.3], [11, Sec.II.2]). 

 ( ; ) ( ; )g r t g r t  
 

   ,   ( ; ) ( ) ( ; )A r t Q t A r t   
  

 (4.5a) 

 ( ; ) ( ) ( ; ) ( )TRT r t Q t T r t Q t    
 

 

Theorem 3: (Image of Spatial Derivatives) 
The action of vector differential operators on (smooth 

enough) objective scalar, vector and tensor valued density fields 

( ; )g r t


, ( ; )A r t
 

, ( ; )T r t


 yield objective density fields described by 

the Euclidean transformations 

 grad ( ; ) ( ) grad ( ; )g r t Q t g r t    
 

 

 div ( ; ) div ( ; )A r t A r t   
  

 

 div ( ; ) ( ) div ( ; )T r t Q t T r t    
 

 

 curl ( ; ) ( ) curl ( ; )A r t Q t A r t    
  

  (4.5b) 

 curl ( ; ) ( ) curl ( ; )T r t Q t T r t    
 

 

 lap ( ; ) lap ( ; )g r t g r t   
 

 

 lap ( ; ) ( ) lap ( ; )A r t Q t A r t    
  

 

or symbolically by 

 grad gradg g   
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 div divA A 
 

 , div divT T   

 curl curlA A 
 

 , curl curlT T   

 lap lapg g   , lap lapA A 
 

. 

Here, “lap” represents the scalar/vector Laplacian operator. A 
proof for gradient and divergence operators is available at [10, 
Sect. 4.3], while the rest of the results can also be obtained in a 
straightforward manner. 

Definition 3: (The Comoving Time Derivative of a Tensor Densi-
ty Field in 3R ) 

The comoving time derivative of an arbitrary (smooth 
enough) contravariant tensor density field ( ; )g r t


 as observed in 

E-frame is described by 

 
0

1
( ; ) lim ( ; ) ( ; )

t
g r t g r t t g r t

t t 

          
  

  (4.6) 

with the assumption ( ; ) ( ; )g r t g r t 
 

 at time t . 

Corollary 2: The comoving time derivative (4.6) can be addressed 
as the image of partial time derivative operator in L- frame; i.e., 

    ; ;
g

g r t r t
t t

 
 

 
  (4.7) 

It is also known as ‘the upper convected material derivative’ or 
‘Oldroyd derivative’ in continuum mechanics when tensor densi-
ty fields are concerned and is the only member of a family of 
invariant time derivatives (cf. [12]) that correctly postulates field 
equations not only in continuum mechanics but also the electro-
magnetism of moving bodies (cf. [2-4]).  The Oldroyd derivative 
was introduced in [13] for establishing invariant forms of rheo-
logical equations of state for a homogeneous continuum, suitable 
for application to all conditions of motion and stress, particularly 
when the frame of reference is a coordinate system convected 
with the material. In that sense the comoving time derivative of 
scalar/vector density fields can be interpreted as the Oldroyd 
derivative of a tensor of rank zero/one.  In the context of electri-
cal engineering we shall prefer the terminology ‘comoving time 
derivative’ to ‘Oldroyd derivative’ since the latter is rather estab-
lished in Continuum Mechanics and essentially related with ten-
sor quantities.   

The comoving time derivative accounts for taking the direc-
tional derivative of covariant tensor density field ( ; )g r t


 along 

the covariant velocity vector v( ; )r t


 of the moving material me-

dium, which is a generalization of the adjective (i.e., nonlinear) 
part of the usual convective derivative in (3.1) when 
v( ; ) v( )r t t
 

.  It is a generalization of the Lie derivative along a 

curve (aka the world-line of a point) in 4-D manifold called Gali-
lean space-time.  It is a natural derivative operator following a 
material point in arbitrary motion and related to the Lie deriva-
tive by the general relation 

 v( ; ) ( ; ) ( ; )g r t g r t L g r t
t t
 

 
 

  
 (4.8) 

The partial time derivative at right hand side in (4.8) accounts for 
the changes of the components as functions of time and its com-
plement Lie derivative represent the changes due to the fact that 
the coordinate system and the associated bases are also changing 

with time (being ‘convected’ with the velocity field of the moving 
material medium). 

For more information and geometrical interpretations of Lie 
and comoving time derivatives one may refer to [14]. 

Theorem 4: (Comoving Time Derivative of Scalar Density Field) 
The comoving time derivative of a scalar density field 

  1
3; ( )g r t C R


 in a material medium moving with an arbitrary 

linear instantaneous velocity field v( ; )r t


 is calculated as 

 

 

 

 

divv

+v grad divv

div v

D
g g g

t Dt

g g g
t

g g
t


 




  



 




 



 (4.9a) 

where 

    v div v v grad divL g g g f g     
 (4.9b) 

stands for the Lie derivative of a scalar density field ( ; )g r t


. 

Theorem 5: (Comoving Time Derivative of Vector Density Field) 
The comoving time derivative of a vector field 

1
3( ; ) ( )A r t C R

 
 in a material medium moving with an arbitrary 

linear instantaneous velocity field v( ; )r t


 is calculated as 

    v grad gradv divvA A A A A
t t
 

     
 

      
 (4.10a) 

where 

    v v grad gradv divvL A A A A    
     

 (4.10b) 

stands for the Lie derivative of a vector density field ( ; )A r t
 

. 

By help of vector identities the comoving time derivatives can 
also be written in the following alternative forms: 

 

   

   

 

div v gradv

gradv divv

vdiv curl v

A A A A
t t

D
A A A

Dt

A A A
t

 
   

 

   


   


    

   

   

  (4.11) 

4.3. Proofs of Theorems 4 and 5: 

A derivation of (4.10a) based on its limit definition can be 
found in [2,3] and in sufficient detail in [15, Sec.4.4].  In this sec-
tion we will provide the proofs of both (4.9a) and (4.10a) in a 
unified manner following a slightly different approach.   

Consider a tensor density field whose volume integral in an 
arbitrarily moving material medium describes a field quantity 
(such as total charge or mass), the physical nature and quantity 
of which is assumed the same for all observers in Euclidean 
space. To be specific let ( )D t , ( )D t  and g , g  be the representa-

tions of the same moving material medium and the tensor densi-
ty field in E- and L-frames, respectively.  Furthermore, let the 
Cartesian E-coordinates  ix  coincide with the general curviline-

ar L-coordinates  ix  at time t , which requires the field quanti-

ties and the differential volume elements to be the same at that 
instant: 
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 d d     ,   ( ; ) ( ; )g r t g r t 
 

   (at time t ) (4.12a,b) 

Then, after an infinitesimal period t , the medium and the ten-
sor densities are denoted by ( )D t t  , ( )D t t    and 

( ; )g r t t 


, ( ; )g r t t   


 as depicted in Fig. 3. 

 

Fig. 3.  E- and L- frames of the moving material medium at 
times t  and t t    

At time t t   the coordinate transformations between the 
two systems can be given by first order as 

 +v ( ; )j
j j ix x x t t  , v ( ; )i

i i jx x x t t    , , 1,2,3i j   (4.13a,b) 

 Spatial partial differentiations in (4.13) yield 

 
v

o( )
j

j j
i

i i

x
t t

x x


 
    

 
, 

v
o( )

i
ii
j

j j

x
t t

x x


 
    

 
, (4.14a,b) 

where 
1, 
0, 

j
i

i j
i j


  

 denotes the Kronecker delta.  Since the me-

dium is dynamic, we cannot talk about the validity of (4.12) also 
at time t t  .  Instead, the only conclusive statement one can do 
at time t t   is the invariance (or conservation) of the integral  

 

( ) ( )

( ; ) ( ; )

D t t D t t

g r t t d g r t t d 
 

       
 

 (4.15) 

An application of the property (4.15) can be found at [16, Ch.2] in 
a different context.  At time t t  , the differential volume ele-
ments are connected by 

 d Jd   (4.16a) 

where  

 
v

det 1 o( ) 1 ( )divv o( )
i

i

j i

x
J t t t t

x x
 

          
 


 (4.16b) 

denotes the nonzero Jacobian of the transformation matrix (aka 
the deformation gradient).  Substituting (4.16a) into (4.15) yields 

 

( ) ( )

( ; ) ( ; )

D t t D t t

g r t t Jd g r t t d 
  

        
 

 (4.17a) 

which, for an arbitrary material medium, necessitates the trans-
formation rule 

 ( ; ) ( ; )g r t t Jg r t t      
 

 (4.17b) 

A proof for formal equivalences as in (4.17b) can be seen in [10, p. 
42] (see also [17, p. 3]).  We further consider the Taylor series 
expansion of  ;g r t t 


 around time t  as 

 ( ; ) ( ; ) ( ; ) ( )
D

g r t t g r t t g r t o t
Dt

      
  

 (4.18a) 

When ( ; )g r t


 is a scalar field, substituting (4.18a) and (4.12b) 

into (4.17b) one gets 

  

( ; ) ( ; )

                       ( 1) ( ; ) ( ; ) o( )

                       ( ) (divv) ( ; ) ( ; ) o( )

g r t t g r t
D

J g r t J t g r t t
Dt
D

t g r t g r t t
Dt

     

      

       

 

 

 

 (4.18b) 

and its comoving time derivative (4.6) can be obtained in virtue 
of (4.18b) directly as (4.9a). 

When  ;g r t


 is a (contravariant) vector field as ( ; )A r t
 

, the 

relation (4.17b) can be written in terms of its contravariant com-
ponents as  

 

   

   

       

 

   

; ;

v
1 ( )divv ( ) o( ) ;

v
; ( ) v ; ; o( )

;

( ) ( ; ) divv ( ; ) gradv ( ; )

o( )

ji i

j

i
ji

j
j

i
ji i

j

i

i i i

x
A r t t J A r t t

x

t o t t t A r t t
x

A r t t t div A r t A r t t
x

A r t

D
t A r t A r t A r t

Dt
t



      


            
  

 
        

  



       
 

 



  



  

 (4.19a) 

The relation (4.19a) provides the connection between the 
contravariant components of A


 at times t  and t t  .  Multiply-

ing each side by the unit vectors ˆix  and ˆix  and using (4.12b), it 

can be arranged as  

 
   

       

; ;

( ) ; divv ; ; gradv o( )

A r t t A r t

D
t A r t A r t A r t t

Dt

     

        

  

       (4.19b) 

Finally, (4.19b) can be placed into (4.6) to get the desired rela-
tion (4.10a).  The relations (4.16) for the deformation of a volume 
are well known in continuum mechanics and can be found in 
many standard textbooks (cf. [18]). 

Theorem 6: (Image of Time Derivative) 
The action of the comoving time derivative operator on objec-

tive scalar, vector and tensor valued density fields 

( ; )g r t


, ( ; )A r t
 

, ( ; )T r t


 of 1
3( )C R  yield objective density fields 

described by the Euclidean transformations 

 ( ; ) ( ; )g r t g r t
t t
   
 

 
 (4.20a) 

 ( ; ) ( ) ( ; )A r t Q t A r t
t t
    
 

  
 (4.20b) 

 ( ; ) ( ) ( ; ) ( )TRT r t Q t T r t Q t
t t
     
 

 
 (4.20c) 

or symbolically by 
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 ( ; ) ( ; )g r t g r t
t t
  
 


 

 

 ( ; ) ( ; )A r t A r t
t t
  
 


  

 

 ( ; ) ( ; )T r t T r t
t t
  
 


 

 

A proof is available at [10, Sec.4.3]. 

Lemma 2: The relations (4.20) can be generalized for an arbitrary 
order of differentiation 1k   as 

 ( ; ) ( ; )
k k

k kg r t g r t
t t

   
 

 
  (4.21a) 

 ( ; ) ( ) ( ; )
k k

k kA r t Q t A r t
t t

    
 

  
  (4.21b) 

 ( ; ) ( ) ( ; ) ( )
k k

TR
k kT r t Q t T r t Q t

t t

     
 

 
 (4.21c) 

A combination of the results (4.5) and (4.21) which is suitable in 
establishing the link between Maxwell equations of stationary 
media and FIEFE in Part 2 can be given as follows: 

Corollary 3: For arbitrary (smooth enough) scalar/vector density 
fields f , g , A


, B


, C


 one has the maps 

 
div ( ; ) ( ; ) ( ; )

  div ( ; ) ( ; ) ( ; )

f
A r t r t g r t

t

A r t f r t g r t
t

      



 


   

   


 (4.22a) 

 
curl ( ; ) ( ; ) ( ; )

  curl ( ; ) ( ; ) ( ; )

B
A r t r t C r t

t

A r t B r t C r t
t

      



 


   

   


 (4.22b) 

 ( ; ) ( ; ) ( ; ) ( ; )L f r t g r t L f r t g r t     
   

  (4.22c) 

 ( ; ) grad ( ; ) ( ; ) grad ( ; )L A r t g r t L A r t g r t      
    

  (4.22d) 

between the two reference frames, where 

 
2

2L lap
tt

     


 (4.22e) 

is the stationary wave operator in L-frame, and 

 
2

2L lap
tt

 
 

  


 (4.22f) 

is the progressive wave operator in E-frame with  ,  ,  being 
arbitrary positive constants (or constitutive 
 parameters). 

Just as in Corollary 1, the restriction of the definition of the 
comoving time derivative in 3R  to 2R  directly yields its expres-

sion on a regular surface by the following: 

Corollary 4: (Comoving Time Derivative on a Surface) 
The comoving time derivatives of a scalar field ( ; )Sf r t


 and a 

vector field ( ; )SA r t
 

 defined only on a two-sided, regular surface 

( )S t  traveling with a linear instantaneous velocity v( ; )Sr t


 is giv-

en by 

 
   

( ; ) ( ; ) div v ( ; )

div v +v grad div v

S S S S

S S S

f r t f r t f r t
t t
D

f f f f f
Dt t

 
     


    



  

  
 (4.23a) 

 

   

   

   

 

v grad grad v div v

div v grad v

grad v div v

vdiv curl v

S S S

S S

S S

S S

A A A A A
t t

A A A
t

D
A A A

Dt

A A A
t

 
     

 


   


   


   


      

   

   

   

 (4.23b) 

Corollary 5: (Reynolds and Helmholtz Transport Theorems) 
Let us consider the integral relations  

 ( ; ) ( ; )
gd

g r t d r t d
dt t

 

 
 

    
 

 
 

 ( ; ) ( ; )

S S

d A
A r t dS r t dS

dt t
 

      
 
   

 

for (smooth enough) scalar and vector density fields g , A


 over 

an arbitrary volume   and a two-sided, regular surface S , re-
spectively.  Their maps into E-frame by direct substitution yield 
the well-known transport theorems of Reynolds and Helmholtz  

 

( ) ( ) ( ) ( )

v

t t t t

g gd
g d d d g dS

dt t t
   

  


 
  

     
 (4.24a) 

 

 
( ) ( )

( ) ( )

  vdiv v

S t S t

S

S t S t

d A
A dS dS

dt t

A
A dS A dS

t



  



 
        

 

 

  

     
  (4.24b) 

Similarly, the restriction of (4.24a) on a two-sided, regular surface 
in 2R  reads 

 
( ) ( )

( ) ( )

ˆ                   2 v v

S t S t

S t S t

gd
g dS dS

dt t

g
g n dS g dC

t







 
       

 

 
 

 (4.24c) 

5. Properties of the Comoving Time Derivative 

5.1. Certain Differential Properties 

For constant quantities c , C


 and the scalar/vector fields 

( ; )f r t


, ( ; )g r t


, ( ; )A r t
 

, ( ; )B r t
 

 of 1
3( )C R  one can observe the 

following properties. 

Property O1: 

  divvc c
t






   ,     gradv divv curl vC C C C

t


     


     
 

Property O2:   f
cf c

t t



 

   ,     A
cA c

t t
 


 


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Property O3:    f g
f g

t t t
 

  
  

   ,     A B
A B

t t t
  

  
  

  
 

Property O4:    divv
f g

fg g f fg
t t t

 
  

  


    

Property O5:  

 

       

 

 

 

 

v grad gradv+ divv

+v grad divv

v grad gradv divv

divv

divv

fA fA fA fA fA
t t

f f f A
t

f A A A A
t

fA

f A
A f fA

t t

 
    

 
     

        


 
  
 

      

 

     

 
  

 

Property O6:      divv
D

A B A B A B
t Dt


    


     
 

Property O7: 

 

     
   

   

divv gradv

divv gradv

+ gradv gradv

DA DB
A B B A A B A B

t Dt Dt
A B

B A A B A B
t t

A B A B


         


 

        
 

    

        

      

   

 

Property O8: For n  

 
   1 1

1

( 1) divv divv

( 1)

n n n n n

n

f Df
f nf n f nf f

t t Dt
f Df

f n
t Dt

 




    

 
 

    

 

  

Property O9:    
ˆ ˆ

ˆ ˆ ˆgrad v div v div vS S S
n Dn

n n n
t Dt


    


  

, 

where ˆ( )n t  is the unit normal of a regular surface ( )S t  in arbi-

trary motion.  This property can be verified in virtue of Property 
C9 and (3.2a) which requires ˆ grad v 0Sn  


. 

Property O10:    
ˆ

ˆ ˆ ˆ ˆdiv vS
n

n n n n
t t t t

      
   

   


, where 

ˆ( )n t  is the unit normal of a regular surface ( )S t  in arbitrary mo-

tion and ( ; )Sr t


 is an arbitrary scalar density function. 

5.2. Certain Commutative Properties 

For the purpose of deriving the progressive wave equations 
in Part 2 we provide below three theorems investigating certain 
commutative properties between the comoving time and spatial 
(nabla) derivative operators 

Theorem 7: In an arbitrarily moving material medium a density 

field vector ( ; )A r t
 

 of 2
3( )C R  provides the commutative proper-

ties 

  div divA A
t t
      

 
   ,      v vdiv divL A L A 

 
 (5.1a,b) 

Proof:  The proof requires demonstration of the equality 

 
 

    

div v grad gradv divv

v grad div div divv

A A A

A A

     

  

    

     (5.2a) 

For this purpose we shall introduce the following tensor 
identities (cf. [19, Ch. 7]) 

 TRA A   
 

 (5.3a) 

    div div : gradA A A      
  

 (5.3b) 

where A


 is a vector;   is a tensor of rank two ( a dyad); ‘ : ’ is 

the tensor inner product defined as : ij ijA B A B
 

; the superscript 

TR  represents the transpose of the tensor when written in matrix 
form.  From (5.3) one can write 

      div div div : gradTR TR TRA A A A        
   

 (5.3c) 

and use this property to calculate 

 

   

   

   

div v grad div grad v

 div grad v grad : grad v

 v grad div grad v : grad

TR

TR TR

TR

A A

A A

A A

     
    
 

  

  

  

  

 

 

   

   

   

div grad v div grad v

 div grad v grad v : grad

 grad div v grad : grad v

TR

TR TR

TR

A A

A A

A A

     
     

  

  

  

  

 

We also have the tensor properties 

    grad v : grad grad : grad v
TR TR

A A
  

 

       div divv div divv grad divvA A A       
    

 

which altogether verify the desired equality (5.2a) upon a direct 
substitution. A similar proof is available in the investigation in 
[20, Sec. 3.1] of the Maxwell - Cattaneo wave equation in heat 
conduction. 

From Theorem 7 we observe that the commutative property 
between the comoving time derivative and divergence operators 
applies regardless of the type of motion. 

Next we set to find a similar property for the divergence op-
erators replaced with curl operator. 

Theorem 8: 

 

    

   

       

curl curl v grad curl curl divv

grad divv grad curl v

grad v grad grad grad v
TR TR

A A A A
t t

A A

A A

         
     

 
 

 

    

  

  
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   

       

   

curl grad curl v

curl grad v grad v grad

grad grad v

TR

TR

A A
t

A A

A


  



  







  

  

 

 (5.4) 

where



stands for the cross-dot product in dyadic algebra de-

fined by 

       ab cd a c b d


  


      
 (5.5a) 

or          ˆ ˆgrad grad grad gradi j i ja b a b x x
      


 (5.5b) 

Proof:  For our purpose let us introduce the tensor identity 

    curl curl gradA A A



      

  
 (5.6) 

Accordingly, one can write 

 

   

     

     

curl v grad curl grad v

curl grad v grad v grad

  v grad curl grad v grad

TR

TR TR

TR

A A

A A

A A

     
      


  



  

  

  

 

 

   

     

     

curl grad v curl grad v

curl grad v grad grad v

  grad curl v grad grad v

TR

TR TR

TR

A A

A A

A A

     
      


  



  

  

  

 

and also invoke the property  

       curl divv curl divv grad divvA A A       
    

 , 

which altogether yield the desired relation (5.4).  Eq. (5.4) also 
signifies that there does not exist a simple commutative property 
between curl and the comoving time derivative operators similar 
in form to the case in Theorem 7 for arbitrary velocity fields.  The 
sophisticated structure of (5.4) for arbitrary velocity fields ren-
ders it impractical in obtaining FIEFE in the most general case.  
However, for any medium in arbitrary Euclidean motion one can 
obtain the desired simple commutative property as follows: 

Theorem 9: In an arbitrary material medium in Euclidean motion 

a density field vector ( ; )A r t
 

 of 2
3( )C R  provides the commuta-

tive properties 

  curl curlA A
t t
      

 
 ,     v vcurl curlL A L A 

 
 (5.7a,b) 

Proof:  Let us look into the two special cases of Euclidean motion 
separately. 

5.3. Special Case 1: Translational Motion  

In this special case described in (4.3) the comoving time de-
rivative reduces into the classical convective derivative directly 
as 

 
v v( ) grad

grad v( ) v( ) curl

D
A L A A t A

t t Dt t

A
t A t A

t

                  
       


   

   
 (5.8a) 

with 

 v v( ) grad grad v( ) v( ) curlL A t A t A t A       

     

 (5.8b) 

and the desired result (5.7) is seen directly upon setting the spa-
tial derivatives of the velocity vector to zero.  If we invoke the 
special case v v( )t

 
 and substitute gradA


 in place of A


 in the 

general vector identity 

  grad v v grad gradv curlv v curlA A A A A        
        

 

 one gets 

  grad v( ) grad v( ) grad gradt A t A    
  

, 

through which one obtains an additional commutative property 

  grad gradA A
t t
      

 
  ,     v vgrad gradL A L A 

 
 (5.8c,d) 

required in deriving the potential wave operators. 

5.4. Special Case 2: Rotational Motion 

In this special case described in (4.4) the velocity vector has 
the properties 

  ˆ ˆˆ ˆgrad v= ( )t  


, ˆcurl v=2 ( )t z


, div v 0


, ˆa ( )t 


 

  grad v grad v
TR  

 
  ,   grad divv 0


  ,   grad curl v 0


 

where the dot over angular frequency (and over any quantity for 
the rest of the investigation) indicates ordinary time derivative.  
Then for general field quantities in the form ( , , ; )f f z t  , 

 ˆˆ ˆ( , , ; ) ( , , ; ) ( , , ; ) ( , , ; )zA z t A z t A z t zA z t            


, 

one obtains 

 v v grad ( )
f

L f f t



  


 
 (5.9a) 

 
v ˆv grad gradv ( )

ˆˆ ˆ( ) z

A
L A A A t z A

A A A
t z 




  
  

 
         

  
       


    

 (5.9b) 

 

v

v grad

( )

D
f f

Dt t

t f L f f
t t t




     
                 





 (5.9c) 
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v

v grad ( )

ˆ ˆ( ) ( )

D
A A t A

Dt t t

L t z A t z A
t t




 

               
                 



  

   (5.9d) 

    ˆgrad ( ) grad grad
D D

f t z f f
t Dt Dt

              
 (5.9e) 

 

    1 grad v grad

ˆ 1ˆ ˆ

TR

z z

A

A AA A
z A 






     




    
              



 

 

         1 grad grad v 1 grad grad v

1ˆˆ ˆ

TR
A A

A A A A
z A

z z
   



 

 
  

 
 

 

     
              

  

 

         ˆgrad v grad grad grad v ( ) curl
TR TRA A t z A

 
   

 

   
 

            curl grad v grad v curl grad v curl
TR

A A A     
    

 

 

 

 

ˆgrad grad ( )

ˆgrad ( ) grad

grad

A t z A
t t

A t A z
t

D
A

Dt





          
     

   
 

 

 



 (5.9f) 

 

   

   
v v

v

ˆgrad grad ( )

ˆ  grad ( ) grad

 grad ( )grad

L A L t z A

L A t A z

D A
A t

Dt t








    

  

                 

 



 

 



 (5.9g) 

Placing the resultant expressions into (5.4) we obtain the de-
sired result (5.7), which completes the proof of Theorem 9: 

 

     

       

   
   

curl curl curl grad v

grad v grad grad grad v

ˆ  curl grad v ( ) curl

ˆ( ) curl curl

TR TR

A A A
t t

A A

A t z A
t
D

t z A A
Dt t





        
 

 
 


      

       

   

  

 

 

 

Certain of the important results obtained for the two special 
cases of Euclidean motion are depicted in Table 1.  An investiga-
tion of these properties for media in non-Euclidean motion, espe-
cially involving radial motion with a velocity field in the general 
form v( ; ) ( ; )r t r t r

  
 characterizing expansion or contraction 

mechanisms with specific applications in electromagnetic theory, 
are left as the subject of a separate work. 

Type of 
Motion 

Translational Rotational 

Coordinate Maps v ( )
t

i
i ix x d 



    
1 1

2 2

cos ( )    sin ( )
sin ( ) cos ( ) 

x t xt
x t t x

 
 

     
           

 

3 3x x   
Description of Veloci-

ty 
v( ; ) v( )r t t
 

 ˆv( , , ; ) ( )z t t   


 

Differential 
Properties of Velocity 

div v 0
  

curl v 0


 

div v 0


 
ˆcurl v 2 ( )t z


 

Velocity Gradient grad v 0L  
   ˆ ˆˆ ˆgrad v ( )L t    

  

Deformation Gradi-
ent 

1 0
0 1 

i

j

x
F I

x
 

     
 

cos ( ) sin ( )
( )

sin ( ) cos ( ) 
TRi

j

t tx
F Q t

t tx

 
 

 
     

 

Jacobian of Defor-
mation Gradient 

det 1i

j

x
J

x


 


 det 1i

j

x
J

x


 


 

Convective 
Derivative 

v( ) grad
D

t
Dt t


  



 ( )

D
t

Dt t



 

 
 

 

Comoving Time 
Derivatives 

D
f f

t Dt





 

D
A A

t Dt





 
 

D
f f

t Dt





 

ˆ( )
D

A t z A
t Dt

       

 
 

Certain 
Differential 
Properties 

   D
fg fg

t Dt





    D
fg fg

t Dt




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   D
fA fA

t Dt





 
 

   D
A B A B

t Dt


  


  
 

   D
A B A B

t Dt


  


  
 

   D
fA fA

t Dt





 
 

   D
A B A B

t Dt


  


  
 

  A B
A B B A

t t t
  

    
  

   
 

Commutative 
Properties 

 grad grad grad
D

A A A
t t Dt
            

  
 

 curl curl curl
D

A A A
t t Dt
            

  
 

 grad grad
D

A A
t Dt
      

 
 

 curl curlA A
t t
      

 
 

Table 1.  Certain analytical results for two special types of Euclidean motion 

PART 2: THE AXIOMATIC STRUCTURE 

6. Maxwell Equations of Stationary Media 

We consider a medium with arbitrary electromagnetic prop-
erties in arbitrary motion with respect to an observer considered 
at rest in E-frame as depicted in Fig. 4.  

 

Fig. 4.  E- and L-frames of an electromagnetic medium in ar-
bitrary motion 

In L-frame denoted with primes the medium is considered 
locally at rest (‘stationary’).  By definition, convective currents 

( ; )VJ r t 
 

 occur when a material medium is in motion and there-

fore are avoided in L-configuration, by which one infers that the 
free currents in stationary media constitute only conduction cur-
rents, namely  

 ( ; ) ( ; )f CJ r t J r t   
  

. 

Accordingly, we introduce the following postulate: 
Postulate 2: Macroscopic electromagnetic phenomena of station-
ary media are governed by the Maxwell equations 

 curl ( ; ) ( ; ) 0E r t B r t
t
     


   
 (6.1a) 

 curl ( ; ) ( ; ) ( ; )CH r t D r t J r t
t
       


    
 (6.1b) 

 div ( ; ) ( ; )fD r t r t    
  

 (6.1c) 

 div ( ; ) 0B r t   
 

 (6.1d) 

or equivalently, the integral set 

 0

S S

d
E dc B dS

dt
 

       
    (6.2a) 

 C

S S S

d
H dc D dS J dS

dt
  

           
     (6.2b) 

 fD dS d

 

 
 

     


  (6.2c) 

 0B dS



  


  (6.2d) 

where also we involve the closed form constitutive relations  

   0; e
dD f E H E P      
    

  (6.3a) 

   0; m
bB f E H H P      
    

 (6.3b) 

  ;C CJ f E H  
  

 (6.3c) 

Here   and S  are arbitrary regular volume and surface re-
gions which are stationary in L-frame and all primed field quan-
tities are described and measured by an L-observer, i.e., by an 
ideal measurement device mounted on any measurement point 
in the medium. 

When the Maxwell equations are considered as the funda-
mental laws of stationary media, then the continuity relation 

 div ( ; ) ( ; ) 0C fJ r t r t
t
     



  
 (6.4a) 

or equivalently,  0C f
d

J dS d
dt

 

 
 

       


  (6.4b) 

follows as a corollary. 
The Lorentz potentials in L-frame are given by 

 ( ; ) curl ( ; )B r t A r t   
  

 (6.5a) 

 ( ; ) ( ; ) grad ( ; )E r t A r t V r t
t
        


   
 (6.5b) 

The Poynting theorem in the L-frame in point form is given by 

 div 0e m
d d CP E J H J E J           

      
 (6.6a) 

where 

 ( ; ) ( ; ) ( ; )P r t E r t H r t      
    

 (6.6b) 

is the usual Poynting vector and 

 ( ; ) ( ; )e
dJ r t D r t

t
   


  
   ,   ( ; ) ( ; )m

dJ r t B r t
t
   


  
 (6.6c,d) 
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stand for the electric and magnetic displacement current densi-
ties regardless of the constitutive parameters of the medium in-
volved. 

The integral form of Poynting theorem (6.6a-d) in   is writ-
ten as 

 ( ; ) ( ; ) ( ; ) ( ; )e m
in d d CP r t P r t P r t P r t        
   

  (6.6e) 

where 

 inP P dS



    


   (6.6f) 

 e e
d d

D
P E J d E d

t
 

 
 

       
 
  

 (6.6g) 

 m m
d d

B
P H J d H d

t
 

 
 

       
 
  

 (6.6h) 

 C CP E J d






    
 

 (6.6i) 

and can be interpreted as follows: 
The total electromagnetic power inP  entering (or pumped by 

external sources to) an arbitrary stationary material medium   
is equal to the sum of 

1. the total electrical power e
dP    stored in that medium; 

2. the total magnetic power m
dP    stored in that medium; 

3. the total electrical power CP  dissipated as heat in that 

medium. 

In a simple medium described by the constitutive relations 

 D E 
 

   ,   B H 
 

   ,   CJ E 
 

 (6.7a-c) 

the well known wave equations  

  ( ; ) 1 grad ( ; )fL E r t r t      
  

 (6.8a) 

 ( ; ) 0L H r t   
 

 (6.8b) 

 ( ; ) 0L A r t   
 

 (6.8c) 

  ( ; ) 1 ( ; )fL V r t r t      
 

 (6.8d) 

and the Lorentz gauge relation  

 div ( ; ) ( ; ) ( ; ) 0A r t V r t V r t
t

        


   
 (6.8e) 

The Lorentz force law in L-frame is an additional (external) pos-
tulate to Maxwell’s field theory given by the following: 

Postulate 3: The mechanical force acting on a material point 
charge at rest in Maxwell’s field theory of stationary media is 
described by the Lorentz force law, which we express for the 
force volume density field as 

 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )f C
dF

f r t r t r t E r t J r t B r t
d





             


        
 (6.9) 

The Lorentz force law is our unique bridge connecting the disci-
plines of electromagnetism and mechanics. 

We shall also outline the special cases of electrostatic and 
magnetostatic field equations of stationary media in L-frame as 

 curl ( ) 0E r   
 

 (6.10a) 

 div ( ) ( )fD r r    
  

 (6.10b) 

 ( ) grad ( )E r V r     
  

 (6.10c) 

  ( ) 1 ( )flap V r r      
 

 (in a simple medium) (6.10d) 

 ( ) ( ) ( ) ( )f
dF

f r r r E r
d





       


    
 (6.10e) 

and 

 curl ( ) ( )CH r J r    
  

 (6.11a) 

 div ( ) 0B r   
 

 (6.11b) 

 div ( ) 0CJ r   
 

 (6.11c) 

 ( ) curl ( )B r A r   
  

 (6.11d) 

 div ( ) 0A r   
 

  (Coulomb gauge) (6.11e) 

 lap ( ) ( )CA r J r    
  

  (in a simple medium) (6.11f) 

7. Frame Indifferent Electromagnetic Field 
Equations 

We describe the conjecture of the principle of frame indiffer-
ence onto electromagnetism through the following postulate: 

Postulate 4: The laws of macroscopic electromagnetism are frame 
indifferent. 

This is another way to saying that the observer in E-frame is 
in full agreement with 

 the nature of the physical quantities 
 the structural forms of physical laws, and 
 any measurement result taken  

in L-frame in virtue of the mathematical rules presented in Part 1.  
We claim Postulates 1 to 4 to be sufficient in constructing a mate-
rial description of macroscopic electromagnetism in continuous 
media and they bring about the following corollaries. 

Corollary 6: All primed field quantities in L-frame preserve their 
forms (including the functional space they belong), nature and 
measurement values for any observer in unprimed E-frame 
through the relations 

 ( ; ) ( ; )q r t q r t  
 

   ,   ( ; ) ( ; )f fr t r t   
 

 

 ( ; ) ( ) ( ; )E r t Q t E r t   
  

   ,   ( ; ) ( ) ( ; )D r t Q t D r t   
  

 

 ( ; ) ( ) ( ; )H r t Q t H r t   
  

   ,   ( ; ) ( ) ( ; )B r t Q t B r t   
  

 (7.1) 

 ( ; ) ( ) ( ; )C CJ r t Q t J r t   
  

   ,   ( ; ) ( ) ( ; )F r t Q t F r t   
  

 

Corollary 7:  The frame indifferent spatial gradient (nabla) and 
comoving time derivatives are enrolled to preserve the frame 
indifference of electromagnetic field equations.  Accordingly, in 
virtue of Corollary 3, the images of Maxwell equations in L-frame 
introduce the FIEFE in E-frame in the form 
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 curl ( ; ) ( ; ) 0E r t B r t
t


 


   
 (7.2a) 

 curl ( ; ) ( ; ) ( ; )CH r t D r t J r t
t


 


    
 (7.2b) 

 div ( ; ) ( ; )fD r t r t
  

 (7.2c) 

 div ( ; ) 0B r t 
 

 (7.2d) 

 div ( ; ) ( ; ) 0C fJ r t r t
t


 


  
 (7.2e) 

and equivalently, the integral set 

 

( ) ( )

0

S t S t

d
E dc B dS

dt


    
    (7.3a) 

 

( ) ( ) ( )

C

S t S t S t

d
H dc D dS J dS

dt


      
     (7.3b) 

 

( ) ( )

f

t t

D dS d

 

 


  


  (7.3c) 

 

( )

0

t

B dS



 


  (7.3d) 

 

( ) ( )

0C f

t t

d
J dS d

dt
 

 


   


  (7.3e) 

and the constitutive relations in closed form 

   0; e
dD f E H E P  
    

   ,     0; m
bB f E H H P  
    

 (7.4a,b) 

   ;C CJ f E H
  

 (7.4c) 

Here ( )t  and ( )S t  are the images of   and S  in E-frame.  

In E-frame we describe the convective current and the total free 
current by 

 vV fJ 
 

   ,   f C VJ J J 
  

 (7.4d,e) 

through which the continuity relations can be shaped as 

 div 0f fJ
t


 



 (7.5a) 

 

( ) ( )

0f f

t t

J dS d
t

 

 



  

 


  (7.5b) 

Also the electromotive and magnetomotive forces (emf & mmf) 
measured in L-frame over S  can be expressed in E-frame direct-
ly by the maps 

 

 
( ) ( )

( ) ( ) ( )

emf( )

v

S S t S t

S t S t S t

d
t E dc E dc B dS

dt

B dS B dS B dc
t t

 



       

 
        

 

  

  

   

    

 


 (7.6a) 

 
   

 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

mmf( )

+v v

v

S S t

C C

S t S t S t S t

C f

S t S t S t

f

S t S t S t

t H dc H dc

d
D dS J dS D dS J dS

dt t

D dS J dS D dc
t

D dS J dS D dc
t



 





    


       




      




      



 

   

  

  

  

      

     

    

 





 (7.6b) 

Equations (7.2a,b) can also be written in the familiar form 

  curl v 0E B B
t


   


   
 (7.7a) 

  curl v fH D D J
t


   


   
 (7.7b) 

upon inserting 

 

 
 

 

vdiv curl v

v curl v

curl v

f

V

D D D D
t t

D D
t

D J D
t



 
   

 


   



   


    

  

  

 (7.8a) 

 
 

 

vdiv curl v

curl v

B B B B
t t

B B
t

 
   

 


  


    

 
 (7.8b) 

Regarding the Lorentz potentials, from (7.2d) and (7.7a) one 
can directly write 

 ( ; ) curl ( ; )B r t A r t
  

 (7.9a) 

 

 

( ; ) v( ; ) ( ; ) ( ; ) grad ( ; )

v( ; ) curl ( ; ) ( ; ) grad ( ; )

          grad v grad v 

               curl v grad

E r t r t B r t A r t V r t
t

r t A r t A r t V r t
t

D
A A A

Dt
A V


   




   


    

  

     

    

   

 

 (7.9b) 

regardless of the constitutive parameters of the medium in-
volved.  In his book [21, Ch.5] T.E. Phipps defines the last two 
terms at the r.h.s. of (7.7b) as ‘the Maxwell E


- field’ 

 max( ; ) ( ; ) grad ( ; )E r t A r t V r t
t


  


   
 (7.10) 

based on its structural similarity with (6.5b). 
The introduction of the comoving time derivative requires us 

to describe the electric/magnetic displacement current density of 
the medium in E-frame as 

 v( ; ) ( ; ) ( ; ) ( ; )e
dJ r t D r t D r t L D r t

t t
 

  
 


      

  (7.11a) 

 v( ; ) ( ; ) ( ; ) ( ; )m
dJ r t B r t B r t L B r t

t t
 

  
 


      

 (7.11b) 

where 
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  v ( ; ) curl vVL D r t J D  
   

 (7.11c) 

  v ( ; ) curl vL B r t B  
  

 (7.11d) 

Then the Poynting theorem of the medium in motion can be writ-
ten in the following forms 

 div 0e m
d d fP E J H J E J      

      
 (7.12a) 

 div 0C VP E D H B E J E J
t t
 

        
 

        
 (7.12b) 

 v

v

div

                        0C V

P E D E L D H B
t t

H L B E J E J

 
     

 
      





      

       (7.12c) 

while the Poynting vector in E-frame is defined in the usual form 

 ( ; ) ( ; ) ( ; )P r t E r t H r t 
    

 . (7.12d) 

The integral form of Poynting theorem in E-frame is ex-
pressed by mapping (6.6e-i) as 

 ( ; ) ( ; ) ( ; ) ( ; )e m
in d d CP r t P r t P r t P r t  
   

 (7.12e) 

where 

 

( )

in

t

P P dS



  


  (7.12f) 

 
( ) ( )

v

( ) ( )

     

e e
d d

t t

t t

P E J d E Dd
t

E Dd E L Dd
t

 

 

 

 


   




   



 

  

   

     (7.12g) 

  
( ) ( ) ( )

curl vMax V

t t t

E Dd E J d E D d
t

  

  
      

  
     

 

 

 

( ) ( )

v

( ) ( )

( ) ( )

      

       curl v

m m
d d

t t

t t

t t

P H J d H Bd
t

H Bd H L Bd
t

H Bd H B d
t

 

 

 

 

 

 


   




   




    



 

 

 



   

   

   

 (7.12h) 

 

( )

C C

t

P E J d



 
 

  (7.12i) 

In a simple medium with constitutive parameters (6.7a,b) the first 
integrals at the r.h.s. of (7.12g,h) can also be written as 

 

 1 2
2

( ) ( ) ( )

1 12 2
2 2

( ) ( )

                        v

t t t

t t

E Dd E Ed E d
t t t

d
E d E dS

dt

  

 

    

  


  
   
  

  

  

 

    

  
 (7.12j) 

 

 1 2
2

( ) ( ) ( )

1 12 2
2 2

( ) ( )

                         v

t t t

t t

H Bd H H d H d
t t t

d
H d H dS

dt

  

 

    

  


  
   
  

  

  

 

    

  
 (7.12k) 

In the final steps of calculation in (7.12j,k) we employed the sca-
lar Reynolds theorem. 

The Lorentz force law in E-frame takes the form 

 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )f C
dF

f r t r t r t E r t J r t B r t
d




   
        

. (7.13) 

Substituting (7.9b) and (7.10) into (7.13) gives 

 ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )f Max f
dF

f r t r t r t E r t J r t B r t
d




   
        

. (7.14) 

The resultant expression (7.14), which is generally postulated 
directly as the Lorentz force law, is actually the image of the Lo-
rentz force law (6.9) of stationary media, regardless of the choice 
of Lorentz gauge.  Detailed discussion around (7.14) can be 
found at [21 ,Ch.5]. 

The image in E-frame of the electrostatic and magnetostatic 
field equations of stationary media in (6.10) and (6.11) can be 
written respectively as 

 curl ( ; ) 0E r t 
 

 (7.15a) 

 ( ; ) 0D r t
t





 
 (7.15b) 

 div ( ; ) ( ; )fD r t r t
  

 (7.15c) 

 ( ; ) grad ( ; )E r t V r t 
  

 (7.15d) 

 ( ; ) 0f r t
t






 (7.15e) 

 ( ; ) ( ; ) ( ; ) ( ; )f
dF

f r t r t r t E r t
d




 
    

 (7.15f) 

and 

 ( ; ) 0B r t
t





 
 (7.16a) 

 curl ( ; ) ( ; )CH r t J r t
  

 (7.16b) 

 div ( ; ) 0B r t 
 

 (7.16c) 

 div ( ; ) 0CJ r t 
 

 (7.16d) 

 ( ; ) curl ( ; )B r t A r t
  

 (7.16e) 

 div ( ; ) 0A r t 
 

  (Coulomb gauge) (7.16f) 

 ( ; ) ( ; ) ( ; ) ( ; )C
dF

f r t r t J r t B r t
d

  
     

 (7.16g) 

It should be emphasized that while the electrostatic field 
quantities in L-frame are observed as time dependent in E-frame 
as in (7.15), this does not imply a presence of an additional mag-
netic field. What happens is that the field lines follow the arbi-
trary motion of the source as a whole, without any deformation in 
shape. Therefore it should not be mixed with any type of radia-
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tion mechanism specific to time varying sources where the field 
lines change their shape in L-frame. In that regard FIEFT put is 
very clearly that “stationary (time independent) sources with arbi-
trary velocity do not radiate”. Similar considerations hold for a 
magnetostatic medium in (7.16). 

Next we shall seek the wave equations and Lorentz potentials 
in simple media for the two special cases of Euclidean motion 
summarized in Table 1. 

8. Frame Indifferent Wave Equations and 

Lorentz Potentials in Simple Media 

8.1. Special Case 1:  Translational Motion 

In this case it is sufficient to replace the partial time deriva-

tive 
t



 in the Maxwell equations in L-frame with convective 

derivative as vv( ) grad
D

t L
t Dt t t
  
     

  


, which shapes 

(7.2a,b,e) into 

 curl ( ; ) ( ; ) 0
D

E r t B r t
Dt

 
   

 (8.1a) 

 curl ( ; ) ( ; ) ( ; )C
D

H r t D r t J r t
Dt

 
    

 (8.1b) 

 div ( ; ) ( ; ) 0C f
D

J r t r t
Dt

 
  

 (8.1c) 

In virtue of Lemma 2 the wave equations for fields and Lo-
rentz potentials can be adapted directly from the well-known 
results (6.8) in stationary case as 

  ( ; ) 1 grad ( ; )D fL E r t r t 
  

 (8.2a) 

 ( ; ) 0DL H r t 
 

 (8.2b) 

 ( ; ) 0DL A r t 
 

 (8.2c) 

  ( ; ) 1 ( ; )D fL V r t r t  
 

 (8.2d) 

 div ( ; ) ( ; ) ( ; ) 0
D

A r t V r t V r t
Dt

   
   

 (8.2e) 

 

 
v( ) curl grad

grad v( ) grad

E t A A V
t

D
t A A V

Dt


   



   

  

 
 (8.2f) 

where we define the reduced progressive (or convective) wave 
operator 

 
2

2lapD
D D

L
DtDt

    . (8.2g) 

To understand the nature of the vector convective wave op-
erator (8.2g) let us consider the special case of 1R  where 

 1ˆv( ) v( )t x t


   ,   
1

+v( )
D

t
Dt t x

 

 

. (8.3a,b) 

In this case each field component satisfies the scalar convective 
wave operator 

 

2 2 2
2

2 2
11

1

1 v ( ) 2 v( )

v( ) a( )

DL t t
x tx t

t t
x t

  

  

          
 

     

 (8.3c) 

where a( ) ( )t v t   is the acceleration. 

The discriminant of the partial differential operator in (8.3c) 
reads 

  2 2 2 24 v ( ) 4 1 v ( ) 4 0t t              (8.3d) 

which altogether provide the following evidences: 

1. The discriminant values of the wave operators in L- and 
E-frames are the same (invariant).  Therefore the vector 
operator DL  in E-frame is of hyperbolic type regardless of 

the instantaneous value of the velocity of the material 
points. 

2. 21 v ( ) 0t  , which also describes the speed of light in a 

simple medium, is a critical value for the velocity of mate-
rial points in a simple medium, for which the wave prop-
agation phenomenon breaks down. 

It should be noticed that the investigation so far does not in-
troduce any upper limit for the speeds of material points; mean-

ing that 21 v ( )t  can also take negative values in (8.3c), which 

might address a possibility of speeds of material points faster 
than the speed of light in the same simple medium. 

The field equations (8.1-8.2) are known as Hertz equations 
since they indicate the farthest point Hertz was able to reach in 
his theoretical studies and publish in his 1890 paper (see [22, 
Ch.XIV]) at age 32.  Soon afterwards he got a serious infection 
and passed away in 1894 without a chance to pursue his re-
search. 

8.2. Special Case 2: Rotational Motion  

In this case the wave equations and Lorentz potentials for the 
fields in a simple medium can be written directly as 

  ( ; ) 1 grad ( ; )fL E r t r t  
  

 (8.4a) 

 ( ; ) 0L H r t 
 

 (8.4b) 

 ( ; ) 0L A r t 
 

 (8.4c) 

  ( ; ) ( ; ) 1 ( ; )D fL V r t L V r t r t    
  

 (8.4d) 

 div ( ; ) ( ; ) ( ; ) 0
D

A r t V r t V r t
Dt

   
   

 (8.4e) 

 

 
v curl grad

     grad v grad

E A A V
t

A A V
t


   




   


  

 
 (8.4f) 

In the special case of 1R  where 0






, 0
z




, each field 

component satisfies the reduced form 
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2 2 2
2

2 2 2
1

( ) 2 ( )

     lower order terms

L t t
t t

  
 


    

         


 (8.5a) 

of the progressive wave operator for which the discriminant 
reads 

 24 0     (8.5b) 

and therefore similar physical arguments as for translational mo-
tion hold. 

PART 3: BOUNDARY VALUE PROBLEMS 

9. General Formulation 

The linear structure of electromagnetic field equations require 
that the field expressions in E-frame in any scenario of moving 
bodies should be obtainable through the images of the end re-
sults obtained in the corresponding Maxwell’s theory of station-
ary media (in other words, in L-frame).  Therefore we can solve a 
scattering problem from an isolated moving body formally by 
frame hopping following the steps below: 

1. Map the incoming field from E- to L-frame 
2.  Solve the scattered field from the associated boundary 

value problem in L-frame 
3. Map the scattered field from L- to E-frame 

In complementing the boundary value problem in L-frame, the 
corresponding spatial/temporal jump and edge conditions are 
obtained from the distributional investigation of the field equa-
tions (7.2)-(7.16), which constitute the final postulate. 
Postulate 5: The Maxwell equations of stationary media are valid 
in the sense of Schwartz-Sobolev distributions. 

Although the distributional results of Maxwell equations 
were derived and utilized much earlier in literature, to the best of 
the author’s knowledge, this fact was introduced as a postulate 
first by İdemen [23] in 1973. Along with other types of comple-
mentary conditions such as radiation condition, periodicity, etc., 
we can consider the description of any boundary value problem 
is formally completed.   

In what follows let us consider the scenario in Fig.5 where, 
according to an E-observer, the incident electromagnetic wave 

with fields  ( ; ), ( ; )inc incE r t H r t
  

 and sources  ( ; ), ( ; )Tx Txr t J r t
 

 

generated by a transmitter assumed stationary for E-observer in 
medium I is impinging on an object occupying a region D  and in 
arbitrary relative motion with velocity v( ; )r t


 

 
Fig. 5.  An illustration of a scattering problem 

9.1. The Incoming Wave 

In E-frame 1 2 3Ox x x  the incident fields (with argument ( ; )r t


) 

satisfy the Maxwell equations of stationary media  

 curl 0inc incE B
t


 


  
  , curl inc inc TxH D J

t


 


  
 (9.1a,b) 

 div inc TxD 


   ,   div 0incB 


. (9.1c,d) 

Let us assume the medium I simple and lossless with constitutive 
parameters  ,  . Then the incident fields in E-frame satisfy the 

stationary wave and Helmholtz equations 

 
 2

2 2

11

0
Txinc

inc

gradE
lap

c t H

                   


  (9.2a) 

    2 1

0
Txinc

inc

gradE
lap k

H

    
         


  (9.2b)  

where 1c   is the phase velocity and 2k       is 

the wave number with time dependence taken as  exp i t . For 

an observer in L-frame 1 2 3Ox x x    the object is stationary and the 

surrounding medium I is in relative motion with a velocity 
v ( ; )r t 


. Accordingly, in L-frame the incident fields (with argu-

ment ( ; )r t


) satisfy the frame indifferent field and wave equa-

tions 

 curl 0inc incE B
t
   


  
  ,  curl inc inc TxH D J

t
    


  
 (9.3a,b) 

 div inc TxD   


  ,  div 0incB  


 (9.3c,d) 

 
 2

2 2

11

0
Txinc

inc

gradE
lap

c t H

                      


  (9.4a) 

    2 1

0
Txinc

inc

gradE
lap k

H

     
          


  (9.4b) 

Here the comoving time derivative of a vector incA


 is given by 

 
 

 

v v

        v v v

D
A A A grad A div

t D t

A grad A A grad A div
t

            
 

               


    

     
 (9.5) 

9.2. The Scattered Wave 

Let us express the total field in space in E- and L-frames respec-
tively as 

      
 

, , , in medium I 
,

, , in region D                     

inc inc sc sc
tot tot

d d

E H E H
E H

E H

  


   
 

   

and      
 

, , , in medium I 
,

, , in region D                     

inc inc sc sc
tot tot

d d

E H E H
E H

E H

       
 

   
 

  . 

In L-frame of the scattered field, i.e. according to an observer 
traveling with the scattered field, the ambient source-free medi-
um I is in motion with linear velocity v ( ; )r t 


. Accordingly, the 
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scattered fields in medium I satisfy the frame indifferent field 
and wave equations 

 curl 0sc scE B
t
   


  
  ,  curl 0sc scH D

t
   


  
 (9.6a,b) 

 div 0scD  


   ,   div 0scB  


 (9.6c,d) 

 
2

2 2
1

0sc

sc

E
lap

c t H

            




   ,  2 0sc

sc

E
lap k

H

 
   

  




  (9.7a,b) 

where the accompanying comoving time derivative of a vector 

scA


 is defined as 

 
 

 

v v

          v v v

sc sc sc sc

sc sc sc sc

D
A A A grad A div

D tt

A grad A A grad A div
t

            


               


    

     
 (9.8) 

9.3. Total Field inside the Moving Object 

In L-frame of the region D with fields  ,d dE H 
 

 and sources 

 ,d dJ 


, the region is stationary since the ambient medium I is 

observed as source-free. Therefore in region D the field equations 
of stationary media 

 curl 0d dE B
t
   


  
  ,  curl d d dH D J

t
    


  
 (9.9a,b) 

 div d dD   


  , div 0dB  


 (9.9c,d) 

are satisfied. When the region D simple with constitutive param-
eters  , ,d d d   , (9.9) yield the stationary wave equations 

 
 2

2 2

11

0
d dd

d d
d d

gradE
lap

tc t H

 
 

                       


  (9.10a) 

    2 1

0
d dd

d
d

gradE
lap k

H

     
          



  (9.10b)  

with 1d d dc   , 2 2
d inc d d inc d dk i       . For E-observer the 

field and wave equations (9.9), (9.10) read 

 curl 0d dE B
t


 


  
  ,  curl d d dH D J

t


 


  
 (9.11a,b) 

 div d dD 


   ,  div 0dB 


 (9.11c,d) 

 
 2

2 2

11

0
d dd

d d
d d

gradE
lap

tc t H

 
 

                    


  (9.12) 

where the accompanying comoving time derivative of a vector 

dA


 is defined as 

 
 

 

grad div

         grad grad div

d d d d

d d d d

D
A A A v A v

t Dt

A v A A v A v
t


   




     


    

     
 (9.13) 

9.4. Boundary Relations on the Moving Object 

On the enclosure S D   of the moving medium, which is as-
sumed a simple interface that may support surface charges and 

currents  ( ; ), ( ; )S S S Sr t J r t  
 

, the distributional form of stationary 

field (Maxwell) equations in L- frame read 

 ˆ ˆ( ; ) ( ; ) ( ; )inc S sc S d Sn E r t E r t n E r t            
    

 (9.14a) 

 ˆ ˆ( ; ) ( ; ) ( ; ) ( ; )inc S sc S d S S Sn H r t H r t n H r t J r t               
      

 (9.14b) 

 ˆ ˆ( ; ) ( ; ) ( ; ) ( ; )inc S sc S d S S Sn D r t D r t n D r t r t               
     

 (9.14c) 

 ˆ ˆ( ; ) ( ; ) ( ; )inc S sc S d Sn B r t B r t n B r t            
    

 (9.14d)  

Along with constitutive relations and radiation, edge, tip, perio-
dicity, etc. type conditions complementing the boundary rela-
tions, the associated boundary value problem can be solved 

uniquely to yield the L-fields  ,sc scE H 
 

 and  ,d dE H 
 

, whose 

images also yield the E-fields  ,sc scE H
 

 and  ,d dE H
 

. 

In the following sections we shall investigate three canonical 
problems of practical interest to demonstrate the predictions of 
FIEFT.  

10. TM Plane Wave Scattering by a Moving Di-
electric Half Space 

In this section we shall investigate the scattering of uniform 
homogeneous TM plane waves by a lossless dielectric half space 
for two different modes of motion of practical interest. Common 
to both cases is the expression of the incident wave in region 

1 0x  , which propagates along ˆ (cos ,sin )incn    direction in 

1 2( , )x x  plane with fields represented by 

 3

3 1 2

ˆ ˆ( ; ) ( )
ˆ             ( cos sin )

inc incH r t x f n r ct

x f x x ct 
  
  

  
 (10.1a) 

 ˆ( ; ) ( ; )inc inc incE r t ZH r t n 
  

 (10.1b) 

where Z    stands for the characteristic impedance. For the 

special case of monochromatic source the incident magnetic field 
is assumed to have the general form 

 3ˆ ˆ( ; ) ( )inc inc incH r t x g kn r t  
  

 (10.1c) 

 with angular frequency 2inc incf   and phase velocity 

P 1 1 1ˆ ˆ ˆv inc inc incx c x k x f   


, while (10.1b) still holds. Without 

losing generality, let us assume the half-space 1 0x   lossless 

with constitutive parameters  ,d d  , characteristic impedance 

d d dZ   , wave number  d inc d dk     and refractivity 

defined by d d d dn c c k k      .  

In the first of the two special cases below we carry out the in-
vestigation for general time harmonic and monochromatic waves 
simultaneously. 

10.1. Case I: Uniform Motion 

For E-observer we assume the half-space 1 0x   in uniform recti-

linear motion with velocity 1ˆv Gx 


, 0G const  , while for L-

observer the same medium is stationary and it is half-space 

1 0x   (medium I) moving with linear velocity 1ˆv Gx 
  . Incor-
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porating the coordinate transformations 1 1x x Gt  , 

2 2x x , 3 3x x ; ˆ ˆi ix x , 1,2,3i  , the incoming fields in L-

frame can be given as 

 inc 3 inc inc 3 inc incˆ ˆ ˆ ˆ( ; ) ( ) ( )H r t x f n r c t x g kn r t              
   

 (10.2a) 

 inc inc incˆ( ; ) ( ; )E r t ZH r t n     
  

 (10.2b) 

with 

 inc 1 2ˆ cos sinn r x x      


 ,  

  inc cos (1 cos )c c G c      , inc inc(1 cos )       ,  

  inc inc(1 cos )f f     . 

We observe cos   as a physical limit on G  for the realization 
of scattering phenomenon. The scattered field and the total field 
in region D can be given by 

 3 3ˆ ˆ ˆ ˆ( ; ) ( ) ( )sc TM sc sc TM sc scH r t x R f n r c t x R g kn r t              
   

 (10.3a) 

 ˆ( ; ) ( ; )sc sc scE r t ZH r t n     
  

 (10.3b)  

 3 3ˆ ˆ ˆ ˆ( ; ) ( ) ( )d TM d d TM d d dH r t x T f n r c t x T g k n r t              
   

 (10.4a) 

 ˆ( ; ) ( ; )d d d dE r t Z H r t n     
  

 (10.4b)  

 1 2ˆ cos sinsc sc scn r x x       


, 1 2ˆ cos sind d dn r x x      


. 

The unknown quantities scc , sc , dc , d , TMR , TMT  are solved 

from the boundary value problem 
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1 2 32 2
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1
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1
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d
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inc sc

d

lap H x x x t
c t

lap H x x x t
c t

H x x t H x x t

H x x t x x t

Z H x x t
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         

     

     

   

 

 

 




inc 2 3

2 3 2 3

1

ˆ ˆ(0, , ; )

ˆ(0, , ; ) ,   , ,
Radiation Conditions as  

sc sc

d d d

n H x x t n

Z H x x t n x x t
x












         


       
   





 (10.5a-e) 

The wave equation (10.5a) in medium I, namely, 

 

22

32 2 2
1

2
3 2

1 1ˆ ˆ( )

1ˆ                              1 cos 0

sc sc sc

sc sc

lap H x lap G f n r c t
t xc t c

x c G f
c



                               
      
 

 




 

require (1 cos )sc scc c     , inc(1 cos )sc sc      , while 

(10.5b) in region D  require d dc c   and incd   . Boundary 

conditions (10.5c,d) require 

 2 inc 2

2 2

( sin ) ( sin )
                            ( sin ),    ,

TM sc sc

TM d d

f x c t R f x c t
T f x c t x t

 


     
    

 (10.6a) 

 2 inc 2

2 2

cos ( sin ) cos ( sin )

                            cos ( sin ),    ,

sc TM sc sc

d d TM d d

Z f x c t R f x c t

Z T f x c t x t

   

 

       
    

 (10.6b) 

From (10.6) one uniquely obtains 

I) 2 inc sin sin sinsc sc d ddx dt c c c        , which requires 

sc  , incscc c  , incsc    and the extended Snell rela-

tion 

sin (1 cos )sin dn      (10.7) 

II) the reflection and transmission coefficients 

 
cos cos
cos cos

d d
TM

d d

Z Z
R

Z Z
 
 





,
2 cos

cos cosTM
d d

Z
T

Z Z


 



 (10.8) 

The Brewster angle B  for which one has zero reflection coeffi-

cient ( 0TMR  ) is calculated from the equation 

cos cosd dZ Z  , which, upon substituting the extended Snell 

relation, shapes into the fourth order transcendental equation 
2 2 2 2 2 2 2( sin ) cos (1 cos )d B B BZ n Z n      . A change of varia-

bles cos [0,1)B    provides a compact closed form represen-

tation 

  22 2 2 2 21 (1 ) 0dn Z Z n      . (10.9) 

For ,n   there is always one and only one root of the polyno-
mial (10.9) that falls into the described range of  . For the special 
case d   one has dZ Z n  and (10.9) simplifies as 

 4 2 4 4 3 4 2 22 ( 1) 1 0n n n n         . (10.10) 

A first order approximation in   requires 4 2 4 4 32n n    , 
namely 2  , which can also be considered as roughly equiv-
alent to 0.2  . Under this condition (10.10) reduces to the cubic 
polynomial 

 4 3 4 2 22 ( 1) 1 0n n n       . (10.11) 

(10.10) and (10.11) can always be solved uniquely for the de-
scribed physical range of   by Cardano’s analytical formulas for 
third and fourth order polynomials. The limiting case 0   

yields the classical result 21 1n   . 

The total reflection mechanism 1TMR   is observed for 

2d   and the angle of total reflection TR  is calculated from 

the relation sin cosTR TRn n    , which, by a change of vari-

ables sin [0,1)TR   , can be shaped into the quadratic equa-

tion 

 2 2 2 2 2(1 ) 2 (1 ) 0n n n        . (10.12)  

For a physical solution the discriminant of (10.12) requires to be 

positive: 2 2 2 24 [1 (1 )] 0n n      , or equivalently, 

 21 (1 )n   . (10.13)  

Since [0,1)  , (10.13) can be satisfied for 1n   when 0   as 

well. Under the condition (10.13) the angles of total reflection for  

1ˆv Gx 


 and 1ˆv Gx 


 are found respectively, as 

 1 2 2
2 2sin 1 1 (1 )

(1 )
TR

n
n

n
  


           

 (10.14a) 

 1 2 2
2 2sin 1 1 (1 )

(1 )
TR

n
n

n
  


           

. (10.14b) 
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Finally, the images of  ,sc scE H 
 

 and  ,D DE H 
 

 in E-frame read 

3

3

ˆ ˆ( ; ) ( )
ˆ ˆ            ( )

sc TM sc sc

TM sc sc

H r t x R f n r c t

x R g kn r t
  

  

  
  (10.15a)  

 ˆ( ; ) ( ; )sc sc scE r t ZH r t n 
  

 (10.15b) 

 3

3

ˆ ˆ( ; ) ( )
ˆ ˆ            ( )

d TM d tr

TM d d tr

H r t x T f n r c t

x T g k n r t
  

  

  
  (10.16a) 

 ˆ( ; ) ( ; )d d d dE r t Z H r t n 
  

 (10.16b) 

with  

 1 2ˆ cos sinscn r x x    


, 1 2ˆ cos sind d dn r x x   


 

 (1 cos )scc c    , (1 cos )tr d dc c n   , (10.17) 

and the angular frequencies 

 (1 2 cos )sc inc     , (1 cos )tr inc dn     , (10.18) 

which reveal the famous Doppler effect. 

10.2. Case II: Harmonic Motion 

In this example we consider the special case of harmonic motion 

1ˆv( ) ( )t G t x


, ( ) cos( )G t G t , G const  with coordinate trans-

formations 1 1 ( )x x F t  ,  ( ) sin( )F t G t  , 2 2x x , 3 3x x ; 

ˆ ˆi ix x , 1,2,3i   and under monochromatic TM plane wave 

incidence with 

  ˆˆcos( ) Re inc incikn r i t
inc incg kn r t e e      


. (10.26) 

In virtue of the well known Bessel property 

 sin( ) ( )i t im t
me J e 






  , (10.27) 

the image of (10.26) in L-frame is obtained as 

 

 

 

ˆ ( )Re ( )

ˆ  ( )cos ( )

inc incikn r i m t
m

m inc inc

g J e e

J kn r m t

 

 


   






 

     








 (10.28) 

with   cosG k   , which indicates an infinite sum of  plane 

wave  modes with amplitude ( )mJ   and angular frequency 
( )m
inc inc m     . Accordingly, the incident wave can be ex-

pressed as 

  inc( ) ( )
inc inc( ; ) Re ( )m i m tH r t H r e  


 



   
  

 (10.29a) 

  inc( ) ( )
inc inc( ; ) Re ( )m i m tE r t E r e  


 



   
  

 (10.29b)  

incˆ( )
3inc ˆ( ) ( )m ikn r

mH r x J e     
 

, ( ) ( )
incinc inc ˆ( ) ( )m mE r ZH r n     

  
(10.29c,d) 

with 

 inc 1 2ˆ cos sinn r x x      


. 

Based on the principle of superposition for sources and fields, the 
scattered field and the total field in region D can be given by 

  ( )( )( ; ) Re ( )
m

sci tm
sc scH r t H r e 






   
  

 (10.30a) 

  ( )( )( ; ) Re ( )
m

sci tm
sc scE r t E r e 






   
  

 (10.30b)  

 ˆ( )( )
3ˆ( ) ( ) scm ikn rm

sc m TMH r x J R e     
 

 (10.30c) 

 ( ) ( ) ˆ( ) ( )m m
sc sc scE r ZH r n     
  

 (10.30d) 

and 

 
( )
  ( )( ; ) Re ( )
m

di tm
d dH r t H r e








      
 

  
 (10.31a) 

  ( )
    ( )( ; ) Re ( )
m

dm i t
d dE r t E r e 






   
  

 (10.31b)  

 
( )ˆ( ) ( )      

3ˆ( ) ( )
m

d dm m ik n r
m TMdH r x J T e     

 
 (10.31c) 

 ( ) ( ) ( )ˆ( ) ( )m m m
d dd dE r Z H r n     

  
 (10.31d) 

with 

1 2ˆ cos sinsc sc scn r x x       


, ( ) ( )( )
1 2ˆ    cos sinm mm

d d dn r x x      


. 

The boundary and radiation conditions (10.5) uniquely yields 

 ( ) ( )
inc inc

m m
sc m      , ( )

inc
m

d   , sc  ; (10.32) 

the Snell relation for each mode 

 ( )sin (1 )sin m
inc dn m      ; (10.33) 

and the corresponding reflection and transmission coefficients 

 
( )

( )
( )

cos cos

cos cos

m
m d d

TM m
d d

Z Z
R

Z Z

 

 





, ( )

( )
2 cos

cos cos
m

TM m
d d

Z
T

Z Z


 




 (10.34) 

11. TE Plane Wave Scattering by a PEC Cylin-
der in Uniform Rotational Motion 

Let us consider an incident monochromatic TE plane wave with 
electrical field with phasor  

 inc1
inc 3ˆ( ; ) i tikxE r t x e e 
 

 (11.1) 

impinging on an infinitely long PEC cylinder lying along 3x -

axis,  centered at origin and having radius a . The cylinder is 
assumed to rotate in counterclockwise direction with uniform 
angular velocity  , which obeys the coordinate transformations 

rules outlined in Table 1 with ( )t t  , ˆv( ) ( )t a t 


. Setting 

1 cosx   , in virtue of (10.27), the incident field can be ex-

pressed as an infinite sum of modes 
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inc

inc

cos
inc 3

( 2)
3

( )
inc

ˆ( ; )

ˆ            ( )

            ( ; )

i tik

im i t
m

m

E r t x e e

x J k e e

E r t

 

  




  
















 

 

 (11.2) 

Inserting the polar coordinate maps 

    , t    , (11.3) 

the incident field has the L-frame representation 

 

inc

inc

( )
inc

cos( )
inc 3

( 2)
3

( 2)  
3

( )
inc

ˆ( ; )

ˆ            ( )

ˆ            ( )

            ( ; )

m

i tik t

im t i t
m

im i t
m

m

E r t x e e

x J k e e

x J k e e

E r t

  

   

  





  


   




   






  

 

 

 







 

 

 (11.4) 

where we define ( )m
inc inc m     . That the incident field satisfies 

the homogeneous frame indifferent wave equation 

 
2

2 2
1

0inclap E
c t

      

 
 (11.5) 

can be seen upon the substitutions 

  1 2( cos( ) sin( )) 2
3ˆ inci tik x t x t

inc inclap E lap x e e k E           
 

 

 ˆv ( ; ) ( )r t t     


, 1 2
ˆ ˆ ˆ( ) cos( ) sin( )t x t x t         

 v grad 

   



 , 

t t



  
 

   
 

 inc inc incE i E
t


   


 
, 

22
2

2 2 2
1 inc

inc inc incE E k E
c t c

      


  
 

Based on the principle of superposition for sources and fields, the 

scattered field ( )( ; )m
scE r t 
 

, corresponding to the m -th mode of 

incidence, is to be calculated from the boundary value problem 

 

2
( )

2

( ) ( )

( ) ( )

1
( ; ) 0,

Boundary Cond : 0,   ,   

Periodicity Cond : ( , ) ( , 2 ),   
Radiation Condition as  

m
sc

m m
sc inc

m m
sc sc

lap E r t a
tc

E E a

E a E a

 


 

     


               
       


          


 

  

 




(11.6) 

In virtue of the analytical structure of ( )m
incE


, we may apply the 

method of separation of variables as 

 
( )

inc  ( ) ( ) ( )( ) ( )
mi tm m m

scE R e      


 (11.7) 

The angular component satisfies the reduced boundary value 
problem 

 
( )

( )2( ) ( ) 0
m

m      


   ,  ( ) ( )( ) ( 2 )m m        (11.8) 

which enforces the separation constant  to take positive integer 

values 1,2,...   while we choose ( 2)( )( ) im e   
     . 

 The radial component satisfies the Bessel equation 

 

2( )2 2
( )inc

2 2
1

0
m

md d
R

d cd




 

  

              

, (11.9) 

which uniquely yields  -th order Hankel functions of the first 

kind  
( )

(1) inc
m

H
c




 

 
  

 
 under the radiation condition. Accord-

ingly, the sought for scattered field can be written as 

 
( )

inc

( )
( 2)  ( ) ( ) (1) inc

3
1

ˆ( ; )
mm

i i tm m
scE r t x a H e e

c


   

 


 
 

   



 
      

 


 
, (11.10) 

where the unknown coefficients ( )ma are to be solved from the 

reduced boundary relation 

( )
( 2) ( 2)( ) (1) inc

1

( )
m

i imm
ma H a e J ka e

c


    

 


 
    



 
    
 

 ,    (11.11) 

Based on the orthogonality property of the trigonometric func-
tions as 

 
2

( 2) ( 2)

0

0,
2 ,

ir i r
e e d

r


     


 

         , 

one can multiply both sides of (11.11) by ( 2)ire     and inte-
grate w.r.t.   from 0  to 2  to get 

 

2( )
( 2) ( 2)( ) (1)

0

2 ( )

0,
                                    

2 ( ),

m r
ir imm inc

r r m

m

a H a J ka e e d
c

m r
J ka m r


    




     

    
 

  


 

which reads 

 
 

( )
(1)

0,

( ) ,
m

m m

m
a

J ka H ka m




 
 

 (11.12) 

and eventually 

 
 

 
( )

inc( 2)  ( ) (1)
3 (1)

( )ˆ( ; )
mim i tm m

sc m
m

J ka
E r t x H k e e

H ka
          

 
. (11.13) 

 
 

  inc( 2)( ) (1)
3 (1)

( )ˆ( ; ) im i tm m
sc m

m

J ka
E r t x H k e e

H ka
      

 
 (11.14) 

 
 

  inc( 2)(1)
3 (1)

( )ˆ( ; ) im i tm
sc m

m

J ka
E r t x H k e e

H ka
  


  



 
  
  


 
. (11.15) 

 
It is observed that the total scattered field is monochromatic, hav-
ing the same frequency as the incident field and its expression is 
independent of the frequency of rotation, coinciding with the 
result for the stationary case ( 0  ). 
 
 



Albuquerque, NM 2012 PROCEEDINGS of the NPA  21 

12. Conclusion 

The present investigation is planned to pursue by involving 
more boundary values of practical interest in a systematic man-
ner. It should also be interesting to discuss the alternative solu-
tions delivered by Special Relativity Theory of Einstein (SRT), 
both conceptually and numerically, for the same sets of bounda-
ry value problems, whenever SRT applies in its own description. 
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