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Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán
C.P. 54714 Cuautitlán Izcalli, Estado de México
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Abstract. Electric and magnetic fields are relative. They depend not only on a choice of
electromagnetic sources via Maxwell equations, but also on a choice of observer, a choice
of material reference-system. In 1908 Minkowski defined electric and magnetic fields on a
four-dimensional spacetime, as tensorial concomitants of observer. Minkowski defined Lorentz-
group-covariance of concomitant tensor field as group-action that commute with contractions.
Present-day textbooks interpret Lorentz-group-covariance of concomitant tensor differently than
Minkowski in 1908. In 2003-2005 Tomislav Iveźıc re-invented Minkowski’s group-covariance.
Different interpretations of group-covariance, lead to different relativity transformations of
electric and magnetic fields.

An objective of present article is to explore third possibility, implicit in [Minkowski 1908,
§11.6], where a set of all relativity transformations of all material observers forms a groupoid
category, which is not a group.
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1. Introduction: symmetry group of Maxwell equations
In 1904 Lorentz and Poincaré showed that a system of four Maxwell’s differential equations

(observer-dependent) has a symmetry group the same as a symmetry group of metric tensor.
This was the Lorentz and Poincaré isometry group. In 1909/1910 Bateman and independently
Cunningham, showed that Lorentz and Poincaré were wrong, because they discovered only a
subgroup of actual symmetry group of Maxwell equations. In fact symmetry group of Maxwell
equations of electromagnetic field is conformal group of dimension 15, this is actual symmetry
group of massless radiation.

What does it mean to be a symmetry of differential equation? Symmetry act on solutions of
differential equation and maps solutions into solutions. Therefore a symmetry is iso-morphism
of a manifold of solutions.
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As we know perfectly today symmetry group of massless Maxwell’s equations, the conformal
group, was never considered as a group permuting material reference systems. Isometry group
of metric tensor was considered incorrectly as the same as a symmetry group of Maxwell’s
equations. If this could be made plausible then a hypothesis, accepted in 1905 by Albert
Einstein, and in 1908 explicitly by Hermann Minkowski, that this non-Euclidean metric tensor of
empty spacetime and this Lorentz isometry-group is a group that can permute not only solutions
of massless Maxwell’s equations, but can permute also material reference-systems of relativity
theory?

In present paper we argue that light-like massless radiation must not be considered as
a reference system, and therefore must be outside of domain of transformations of material
reference-systems. From the other hand, isometry of metric, as it is the Lorentz group, must
possess in domain all vectors, including also light-like vectors in Minkowski space. This implies
that a set of all transformations among all material reference systems do not need to be
postulated a priori to be the Lorentz isometry-group.

We propose here an alternative for the Einstein isometric special relativity. We suggest that
a set of all relativity transformations (between material reference-systems, among the time-like
vector fields) could be a groupoid viewed as a category, that it is not a group1. One consequence
of groupoid relativity, that it is implicit in Minkowski last publication in 1908, in §11.6, is
examined here for groupoid relativity transformation of the electric and magnetic fields, and
groupoid transformation of the electromagnetic sources Equation (12.7)–Equation (12.8). This
consequence could eventually be tested experimentally.

We wish to show, following Minkowski’s implicit idea in §11.6, that Maxwell theory of
electromagnetic fields does not need the concept of Lorentz group, nor Lorentz-covariance, and
can be formulated alternatively in terms of groupoid relativity, in terms of groupoid category
that is not a group.

1.1. What is groupoid?
We owe to readers brief explication of the difference among concept of a group, a very special

groupoid category, and a groupoid viewed as a category. Groupoid generalize a concept of a
group. Every group is a groupoid category, but not every groupoid category is a group.There
are two differences interrelated. We refer to:

http://mathworld.wolfram.com/Groupoid.html.

The first property of a group distinguishing them from a general groupoid category, is that a
group possess unique neutral element. In the case of Lorentz relativity group, the zero velocity
0Earth of Earth relative to Earth, and zero velocity 0Sun of Sun relative to Sun, are identified
as the unique neutral Lorentz boost, 0Sun ≡ 0Earth ≡ 0 ∈ Lorentz group. In case of groupoid
relativity, instead, these are different elements,

0Sun 6= 0Earth ∈ Groupoid. (1.1)

Every two elements of a group must be composed, group binary operation is global. For
example, if L1 and L2 are two elements of Lorentz group, hence their group compositions, L1L2

and L2L1, belong to Lorentz group. This is not the case in a groupoid category, where not
every pair of elements of a groupoid (i.e. not every pair of morphism of groupoid category) must
be composable. The groupoid binary operation is not necessarily global. In our example of
relativity groupoid, for a set of four different material reference systems denoted by P,Q,R,S,

1 Frequently groupoid is understood as binary operation, renamed by Bourbaki as magma. Groupoid viewed as
a cateory is not magma.

7th Biennial Conf. on Classical and Quantum Relativistic Dynamics of Particles and Fields IOP Publishing
Journal of Physics: Conference Series 330 (2011) 012012 doi:10.1088/1742-6596/330/1/012012

2



consider two groupoid transformations,

P
g1−−−−−→ Q and R

g2−−−−−→ S. (1.2)

Each of these transformations is invertible in the case of a group and also necessarily invertible
in a case of groupoid. However, if Q 6= R and S 6= P, these transformations, g1 and g2, can
be constructed in such way that a priori (e.g. Q not in domain of g2, etc) this would not allow
us to compose them. In this case, a set of all such invertible transformations without of global
composition is said to be a groupoid category, briefly groupoid.

Einstein’s second postulate, Postulate II state: light velocity is independent of motion of
emitting source [Einstein 1905]. It is rather known that this second Einstein’s postulate is a
consequence of only one Minkowski’s postulate, that a group of all relativity transformations
among material reference systems must coincide with Lorentz isometry group. One can
deduce the second Einstein’s postulate also as a consequence of groupoid relativity [Oziewicz
2005]. Therefore as far as light velocity is concerned, there is no difference among Lorentz-
group relativity and groupoid relativity. It is, therefore, impossible to infer Lorentz relativity
transformations from second Einstein’s postulate alone. In fact Lorentz-group relativity
transformations were silently assumed by Einstein. Einstein postulated group structure.
Equivalently, one can deduce group structure by postulating reciprocity of relative velocity (also
postulated by Einstein in 1905), i.e. that inverse of relative velocity v is −v. Reciprocity axiom

of relative velocity does not hold in groupoid relativity [Świerk 1988, Matolcsi 1994, Oziewicz
2005].

2. Notation: basis-free four-dimensional space-time
It is worth to mention that idea of spacetime was implicit in Galileo’s observation of relativity

of space (thus absolute spacetime), and that four -dimensional space-time, with ‘fourth time
coordinate’, was proposed by Jean Le Rond D’Alembert (1717–1783) in articles about the partial
differential wave equation, published in Encyclopedia of Denis Diderot around 1772.

Starting in 1884, Gregorio Ricci-Curbastro developed tensor analysis, and, working jointly
with his student Levi Civita, they made clear in 1901 the difference among ‘contravariant’ and
‘covariant’ vectors. Élie Cartan (1869–1951) used a name a differential form as a synonym for
Ricci’s covariant vector field. Category theory born in 1945, clarify this distinction in terms of
dual spaces, and in terms of dual pair of vector and covector fields. It was clarified that Ricci’s
‘covariant’ vector must acquire categorical meaning as contravariant vector.

In 1908 Hermann Minkowski introduced the following terminology, a space vector, as a
synonym of present terminology space-like vector in a four-dimensional Minkowski spacetime,
and a space-time vector, that presently is understood as a vector in Minkowski spacetime.

Minkowski in 1908 Presently

space vector space-like vector
space-time vector vector, or ‘4-vector’

The Minkowski terminology was, and is, misinterpreted, in particular, when considering
observer-dependent product-structure or

a splitting of spacetime into: ‘space’ ⊕ ‘time’.

The name spacetime, introduced in 1908 by Minkowski, is misleading, suggesting incorrectly
that this concept is derived from two primitive concepts of ‘space’ and ‘time’. It is just opposite,
the very primitive concept is space-time of events, and space is a derived concept that needs an
artificial choice of material body, e.g. Earth or Sun, as a reference system, see Equation (2.1)
below. But any such choice is irrelevant for physical phenomena, it is no more then for example
a convenience for a computer program. If a material reference system is chosen, Earth or Sun,
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then corresponding space of this material body is not a fiber in space-time, but it is rather a
quotient-space = spacetime/material-body,

Space ≡ Spacetime

material body
Time ≡ Spacetime

Convention of simultaneity
, (2.1)

Proper-Time ≡ Spacetime

Metric simultaneity of material body
. (2.2)

Misinterpretation of Minkowski’s terminology grows into three-dimensional and four-
dimensional quantities, 3-dimensional vector, 3-space vectors, 3D versus 4D quantities, 4-vectors,
four-tensors, etc. (e.g. Rindler 1969, §5.4 Four-vector, §5.10 Three-Force and Four-Force;
Landau & Lifshitz, 1975, §6. Four-Vectors). A vector does not have dimension. It is a manifold
and a vector-space that possess dimension.

Spacetime splitting does not mean that there then appear some strange ‘3-dimensional
quantities’. Like Minkowski in 1908, we exclusively use four-dimensional space-time manifold
only. In all our expressions, a boldface electric field E, and a boldface magnetic field B,
denote ‘contravariant’ vector fields (derivations, see next section) on four -dimensional spacetime
manifold. All tensor fields, scalar fields, vector fields, bivector fields, differential multiforms, etc.,
are tensor fields on four-dimensional spacetime manifold only.

Our boldface notation distinguishes ‘contravariant’ multivector fields, from the ‘covariant’
differential forms denoted by italics letters, or by Greek alphabet. Thus, F denotes a bivector
field, whereas F denotes a differential biform. A material observer is a time-like vector field,
and is denoted by boldface P for an observer Paul, and, by boldface R for an observer Rose.

The source of misinterpretation is a concept of a vector field. Many authors denote by E time
dependent electric field strength , i.e. not static electric field, E(r, t), and of course such electric
field is a vector field on four-dimensional space-time, independently of a choice of a basis. This
notation assume silently that derivative of some time coordinate (a parameter t) in direction
of E is zero, Et ≡ (dt)E = 0. This means that this 4D vector field E on spacetime is tangent
to three-dimensional super-surfaces t = const. This condition could be equivalent to stressed
many times by Minkowski, that electric field E must by orthogonal to time-like observer-vector
field P, i.e. E · P ≡ g(P ⊗ E) = 0, for some Minkowski’s metric tensor g. To be Minkowski’ s
metric tensor g does not means here that curvature and torsion of connection must be absent,
we emphasize only that this non-Euclidean spacetime metric was recognized by Minkowski (and
early by Henri Poincaré).

If gP = dt then: E ·P = 0 ⇐⇒ Et = 0. (2.3)

Nobody call E to be ‘nonrelativistic’ because exists another vector P orthogonal to E !
How to understand apparently ‘nonrelativistic’ electric vector field E(r, t) in textbooks by

Sommerfeld [1948], or by Jackson [1962] ? Somebody interpret this as infinite-family of vector
fields on three-dimensional space, family that is parameterized by time parameter. But of course,
such family of vector fields is not a vector field on space, it is not a ‘3D’ vector. Calling time-
dependent vector field as ‘nonrelativistic’ bring objection: nonrelativistic one can associate to
limit c⇒∞, but this field E is a solution of Maxwell differential equations. Authors call E(r, t)
incorrectly as ‘3D’ vector, but in fact this is a vector field on space-time, i.e. this is ‘4D’ vector
field.

Some readers would prefer as more clear an explanation in terms of mathematical bases.
When nowhere-vanishing vector field, E 6= 0, is chosen to be a part of mathematical basis, e.g.
if a basis of vector fields (a frame) is, {e0,E, e2, e3}, then, this vector field E in such basis has
exactly one non-vanishing scalar component, i.e. E ' (0, 1, 0, 0). Each non-zero vector field on a
four-dimensional spacetime possesses a set of three adopted (or associated) differential one-forms
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annihilating this vector field. Each non-zero electric vector field, E 6= 0, in such adopted cobasis
(coframe), has only one non-zero scalar component. For example, let there exist the differential
one-forms, α1 ∧ α2 ∧ α3 6= 0, such that, α1E = 0, α2E = 0 and α3E = 0. In a co-frame basis,
α1 ∧ α2 ∧ α3 ∧ α4 6= 0, a vector field E 6= 0 possesses only one non-vanishing scalar component,
α4E 6= 0.

In this basis-dependent meaning, should this vector field E on spacetime to be ‘1D’ or ‘3D
quantity’? Phrases ‘3D E’, and ‘3D B’, as well as three-dimensions, could be understood in
several different and misleading ways:

• ‘Time-independent’ tensor on spacetime, i.e. tensor with one Lie-symmetry.

• Tensor on three-dimensional sub-manifold.

• Tensor on three-dimensional quotient-manifold.

• Basis-dependent concept that in an accidental (badly chosen) mathematical basis, ‘3D E’
has at most three non-vanishing scalar components.

In the present paper we do not need terminology like 3D, 3-dimensional vector and no ‘4-
vectors’, ‘4-velocities’, - all misleading. We do not accept the distinction between ‘3D’ and ‘4D
quantities’, because if ‘4’ means a dimension of a space-time, then all time-dependent tensor
fields are on spacetime, and in the present paper, and in all textbooks, in Jackson’s F and E,
etc., are always ‘4D’, independently of how many components are not vanishing.

Two different material observers, call them Paul and Rose, each have their own material
reference-system. In each material reference-system, concomitant-compound electric and
magnetic vector fields are defined in 1908 by Minkowski, see Definition 7.1 and expressions
Equation (7.1) below,

E(Paul), B(Paul), E(Rose), B(Rose). (2.4)

In a generic basis of four independent vector fields, each of these vector fields Equation (2.4)
possesses four non-zero scalar components; never more than four. A differential one-form of an
electric field, E(F,Paul), is a tensor field on exactly the same manifold on which differential
bi-form F , and an observer-monad field Paul, are living.

One-hundred years after duality was realized, and important distinction among a concept
of a (coordinate) vector field, ∂x, and a concept of a coordinate-free differential form, dx, was
realized, still it is very hard to find this distinction in present University textbooks. Another
story is to understand that every vector field is coordinate-free, and that also coordinate-vector-
field ∂x that is completely fixed by one coordinate co-frame, is also coordinate-free as every
tensor field must be.

Differential one-form, known also as Pfaff form, like differential of a scalar field, dx, is not
Leibniz’s small infinitesimal increment; instead, following an idea of Isaac Barrow, it is a real-
valued function on vectors (vector is synonym of a process), associating to a vector (process) the
directional derivative (of scalar field) along this vector, see for example [Bishop and Goldberg
1968, page 58]. This paper distinguishes contravariant vectors and tensors on four-dimensional
spacetime, denoted by boldface fonts, from covariant vectors and tensors, and in particular
differential forms, denoted by italic or Greek letters.

A differential one-form is a synonym of covariant vector field, it is a scalar-field-valued
evaluation-map on vector fields. For example, (dx)P = Px is a (directional) derivative of a
scalar field x along a vector field P. Every derivative is directional, however this most important
point is missed in all Calculus texbooks. A vector field annihilated by a given differential one-
form is said to be in kernel of this differential form. Therefore, a value of differential one-form
on vector field is said to be evaluation, and does not need a concept of a scalar product applied
to pair of vector fields of the same covariance. For example, ev(df ⊗ P) ≡ (df)P ≡ Pf, is
evaluation, and not scalar product.
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The concomitant of compound electric field, Paul-dependent electric field as Pfaff differential
form, E(F,Paul), has a time-like vector field P in his kernel, {E(F,P)}P = 0. For E = gE,
equivalently, E · P ≡ 0, [Minkowski 1908 §11.6, Eq. (49)]. Hence, whenever a vector field P
is chosen to be a basis vector field, then in such mathematical basis electric field on spacetime
possesses no more than three non-vanishing scalar components.

The last objective of the present note is to advocate a basis-free and coordinate-free approach,
and therefore, basis-dependent classification into 4D, 3D, 2D and 1D ‘quantities’, is totally
irrelevant for mathematics and for physics.

3. Each vector field is a derivation
Most textbooks of XXI century separate Calculus’s concept of a derivative or a derivation,

from algebraic concept of a vector field. The source of this separation lay also in sorrowful history
of Calculus, a war of Newton against Leibniz. Students learn ancient historical Pierre de Fermat’s
definition of derivative of a function (derivative of a scalar field) that do not allow to imagine
that derivative of a scalar field in reality is not unique, and needs always a choice of a vector
field along which such derivative one can calculate. Every derivative is directional, however
initial chapters of Calculus textbooks insists incorrectly that no one vector field is involved in
the concept of derivative. Derivative of a not constant scalar field x along a coordinate vector
field ∂x, is, by definition, ∂xx = 1, but this is not the only derivative possible. The same scalar
field x, has a different derivative along another coordinate vector field, say ∂(x2+2), namely,

∂(x2+2)x = 1
2x , this is the chain rule. There are so many derivatives of a given not constant

scalar field as many there are vector fields. No vector field chosen, it is not possible to calculate
derivative of a function! The most frequent Calculus-books problem ‘Calculate derivative of
‘2x+ 1’, is meaningless, because ∂(2x+1)(2x+ 1) = 1.

Each partial derivative, like ∂x, is a coordinate vector field (a derivation of an algebra of the
scalar fields), and, as a partial derivative, is not given uniquely by a given scalar field x. Notation
∂x is misleading because this coordinate vector field ∂x depends on a choice of coordinate system,
on a choice of an integrals of motion, for example we need to choose a scalar field t for ∂x such
that ∂xt = 0. This information is missing in notation ∂x. Textbooks of thermodynamics use a
correct notation,

(∂T )P 6= (∂T )V . (3.1)

When writing ∂x it is most important a choice of a coordinate chart to which a scalar field x
belongs; for example, x ∈ {x, t}. If ∂xt = 0, then ∂x ≡ (∂x)t.

Each electric field and each magnetic field, is a vector field, therefore these fields are
derivations of algebra of scalar fields. Therefore coordinate expressions of these vector fields
must be as follows

E = (Exµ)∂µ = (Exµ)
∂

∂xµ
,

B = (Bxµ)∂µ = (Bxµ)
∂

∂xµ
,

P = (Pxµ)∂µ = (Pxµ)
∂

∂xµ
,

R = (Bxµ)∂µ = (Pxµ)
∂

∂xµ
, etc.

(3.2)

Evidently, in Equation (3.2), scalar components, like Exµ, is a derivative of a scalar field xµ,
along electric field E. This scalar component is denoted historically as Eµ ≡ Exµ. In what
follows we will not need and not use neither coordinates nor bases. Physics is coordinate-free
and bases-free.
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4. Herman Minkowski
In 1908 Hermann Minkowski published his last paper, entitled ”The foundations for

electromagnetic phenomena in the moving bodies” (Die Grundlagen für die electromagnetischen
Vorgänge in bewegten Körpen). In 1910, after Minkowski’s death, two other papers were
published under Minkowski’s name. The 1910-paper, of almost the same title, was written
by his pupil Max Born, and sometimes is referred as Minkowski and Born paper, although
was published under the name of Hermann Minkowski alone. When comparing the Minkowski
1908-paper with Born’s 1910-paper, it is clear that Born’s 1910-interpretation was different
from 1908-paper by Minkowski. Born put full emphasis on Lorentz-group covariance, whereas
Minkowski in Part II §11.6 of his 1908-paper defined electric and magnetic fields in a covariance-
free way.

Figure 1. Hermann Minkowski 1864-1909
Portrait provided at http://library.thinkquest.org/05aug/01273/whoswho.html

Minkowski’s 1908 paper deserves commemoration more than Einstein’s 1905 paper did, for
several following reasons.

• Minkowski defined Lorentz group as isometry group of a metric and this definition do not
involve a concept of reference system. Relativity is formulated by Minkowski as one axiom-
postulate only: a group of all transformations among material reference systems coincide
with Lorentz isometry group. See exactly the same definition for example in [Schrödinger
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1931, Bergmann 1942, Einstein 1949, Bargmann 1957]. This postulate (subject of revision
in present paper) reduced the relativity principle to Lorentz group-covariance.

• A tensor is said to be a concomitant tensor, if it is build-from/dependent-on other primary
tensors. Minkowski defined group-covariance, and in particular at the beginning of §11.6,
defined Lorentz-covariance of concomitant tensors. Minkowski’s definition of Lorentz-
covariance does not appears in contemporary University textbooks on electromagnetism.
Tomislav Iveźıc rediscovered the Minkowski group-covariance in 2003-2005.

• The entire §11.6 of Minkowski’s 1908-paper is devoted to ingenious invention of definition
of electric and magnetic fields, as concomitants of absolute electromagnetic field. These
concepts are covariance-free, and do not need at all Lorentz-isometry group.

• Relativity axiom, only one Minkowski’s axiom, does not involve a concept of relative
velocity among material reference systems. Within Lorentz-group axiom, relative velocity
belongs to Lobachevski factor space, see [Varićak 1924], and this factor space is not unique.
This implies that relative velocity among reference systems is also not unique. Contrary to
relativity axiom (not unique relative velocity), in §11.6 of 1908-paper, Minkowski defined
the unique relative velocity among material reference systems identified with normalized
time-like vectors.
When relative velocity among pair of reference systems is not deduced from Lorentz
isometry transformation, i.e. if it is not an element of Lobachevsky factor space, but it
is postulated a priori, then a set of all transformations among material reference-monads is
not a group, but it is a groupoid.

• The Minkowski 1908-paper attracted most attention for constitutive equations that include
electric permittivity D = εE, and magnetic permeability H = 1

µB, extended by Minkowski
to moving material reference system.
Rousseaux [2008] derived Galilean limit γ ⇒ 1, of constitutive equations, considering that
only this limit can be tested experimentally in present day practice.

5. Observer: physical material reference system
Each measurement needs a choice of a material observer [Brillouin 1970]. What is a precise

mathematical model for a physical material reference system?

5.1. Einstein in 1905: observer is a coordinate-basis = tetrad
Lorentz transformation is ‘defined’ frequently as transformation of scalar coordinate system,

from {xµ} to {xµ′}. Here xµ is interpreted as a scalar field, R-valued function on a manifold
of spacetime events. Each coordinate system determine coordinate co-frame, {xµ} =⇒ {dxµ}.
In 1905 Einstein considered that a physical material reference system can be identified with
a mathematical coordinate-basis in spacetime, an observer = {dxµ}. Such observer is known
also as a (holonomic, integrable) frame, or as a (holonomic) tetrad. Whereas tensor fields are
basis-free, i.e., observer-free within identification of an observer with a basis, therefore, every
tensor field is absolute (not relative) within observers-bases. When observer is a basis, then,
physically meaningful (experimentally measurable) quantities are scalar components of absolute-
tensors, relative to a chosen coordinate-basis-observer. This is because these scalar components
of absolute-tensors are observer-dependent, being dependent on a choice of an observer-basis.

Relativity transformation does not acts on events, does not acts on Minkowski space-time.
Therefore does not acts on scalar fields, not on functions, not on coordinates. To say that a scalar
field is Lorentz invariant (or GL-invariant) is empty phrase because Lorentz group does not acts
on scalar fields. A phrase ‘Lorentz-invariant parameter’ e. g. in [Trump and Schieve 1999 p.
13] raise eyebrows. Domain of Lorentz group are all vectors, and this induce transformation of
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all tensors, except of scalar fields. Lorentz group commute with contraction of tensors, cf with
[Minkowski 1908 §11.6 formula (43) and ff.].

Each observer-frame-tetrad, {dxµ}, defines a unique Lorentz metric tensor g, such that
relative to g, this observer-frame is Lorentz orthonormal basis. Then, Lorentz isometry group
is defined as a group permuting orthonormal observer-bases, leaving derived Lorentz metric-
tensor invariant. The Lorentz-covariance, then, is identified with transformation of scalar
components with respect to change of observers-frames. This is the philosophy shared by all
present textbooks, see, for example [Hehl and Obukhov 2003, §D.5.4, pages 296–297]. The
transformation of observer-frames and of scalar components, is considered to be only relativity
transformations. All tensors that are basis-free are considered to be absolute = Lorentz-
invariant.

A transformation is said to be passive if domain of transformation is a non-linear manifold
of all bases of a vector space. ‘Passive’ means active action on coordinate-basis, but not on
individual absolute-vectors. Some authors claim that tensor fields (like for example differential
biform of electromagnetic field F ), are invariant with respect to passive Lorentz transformations.
This claim is incorrect, because every tensor field is basis-free and coordinate-free, and can be
presented in arbitrary non-orthogonal basis, not necessarily in Lorentz-basis. Therefore, in fact,
each tensor is invariant relative to passive general linear group, GL-group, acting on bases.

Of course, every tensor is GL-covariant, and also Lorentz-covariant, relative to GL and
Lorentz transformations acting on individual vectors (and not on bases).

5.2. Euler’s fluid and Minkowski in 1908: observer = monad
An objection against Einstein’s identification of physical material reference system with

mathematical coordinate-basis or with a frame, is that neither coordinates nor bases need
physical concept of a material body. How distinguish coordinates of material ”point” from
not material point? No inertial mass in involved in a mathematical concept of a frame as a basis
[Brillouin 1970]. In fact kinematics does not exists without a concept of inertial mass and center
of mass, however in textbooks concept of a mass is considered as a part of dynamics, and not
of kinematics.

An alternative point of view, different from Einstein’s in 1905, is axiom that physics
(observers, measurements, etc.) is coordinate-free, and basis-free. Because several physical
concepts are observer-dependent, like electric field, hence an observer, within this axiom, cannot
be identified with a mathematical basis.

If physics is coordinate-free and basis-free, then, mass-irrelevant old coordinate kinematics as
presented for example in [Whittaker 1952], is useless, and must be replaced by Leonard Euler’s
material fluid introduced in 1754 as a vector field in spacetime. Euler’s fluid was reincarnated by
Minkowski in 1908: physical material reference system is identified with a time-like fluid vector
field in a space-time, known also as a monad, and abbreviated in the present note as observer-
monad, or as observer-vector. Within this view mathematical bases are irrelevant for physics.
Clearly, a time-like vector field cannot describe a massless radiation, and therefore is related to
some non-zero mass-density as in Euler’s approach. Mass-density ‘ρ’ enter to energy-momentum
tensor of a perfect fluid, and it is indispensable for two-body kinematics of center-of-mass and
for reduced mass.

The monad-observers, time-like fluids, were re-invented independently by Eckart in 1940,
Ehlers in 1961, and by Abraham Zelmanov (1913-1987) in his PhD Dissertation in 1944, and in
his publication in 1976. Minkowski’s first invention of monad-observer in 1908 went to oblivion.
For discussion of Einstein’s tetrad, versus Minkowski’s monad, we refer to [Mitskievich 2006,
Chapter 2].

Consider two material bodies, reference systems, P for Paul, and R for Rose. Each material
reference system is a monad, i.e. it is g-normalized time-like vector field. All material bodies

7th Biennial Conf. on Classical and Quantum Relativistic Dynamics of Particles and Fields IOP Publishing
Journal of Physics: Conference Series 330 (2011) 012012 doi:10.1088/1742-6596/330/1/012012

9



(inertial or non-inertial) in spacetime must be treated on the same footing and must therefore
be not-distinguishable by normalization [Minkowski 1908 Part I §4 Eq. (19); Part II §8 Eq. (27)
and §11.6 Eq. (46)],

P2 ≡ P ·P = R ·R = −1. (5.1)

Vector field is coordinate-free, therefore coordinate expressions, like, P = Pµ∂µ = ∂ct, are not
so important. The scalar magnitude of light velocity in vacuo is denoted by c.

Let w = wx∂x + wy∂y + wz∂z, be space-like velocity of Rose relative to Paul, i.e. a relative
velocity as measured by Paul, w ·P = 0. Two observers-monads are as follows [Minkowski 1908
§4 before time-like normalization (19); §11.6, before equation (46)],

Rose’s monad R ≡ γ {w + P} , Paul’s monad P = ∂ct. (5.2)

Minkowski’s observer is denoted by a letter ‘w’ in [Minkowski 1908 before Eq. (46)], and here
is denoted by Rose R.

Minkowski in 1908 before Eq. (46) Our notation in Equation (5.2)

w ≡ {w1, w2, w3.w4} R
i P

w ≡ {wx,wy,wz} w = wx∂x + wy∂y + wz∂z

Minkowski’s line before equation (46), is the definition of relative velocity w, and can be read
as follows

w ≡ {w1, w2, w3, w4} ≡ w1∂x + w2∂y + w3∂z + w4∂ict = γ{w + i∂ict} (5.3)

This pair of Minkowski’s observers, Equation (5.2), P and R, is Eq. (8a) in [Hamdan 2006].
Heaviside [1888, 1889] introduced scalar factor γ, and his definition that follows, is equivalent

to Minkowski’s normalization R2 = −1 in [Minkowski Eq. (46)]

P ·P = R ·R = −1 =⇒ P ·R = − γ, (5.4)

R2 = −1 ⇐⇒
(u

c

)2
= 1− 1

γ2
, (5.5)

γ ≡ 1√
1− u2/c2

' 1 +
1

2

∣∣∣u
c

∣∣∣2 +
3

8

∣∣∣u
c

∣∣∣4 +
5

16

∣∣∣u
c

∣∣∣6 + . . . (5.6)

6. Cross product of vectors in spacetime
Relativity transformation of electric and magnetic fields, see Equation (11.3) and Equation

(12.15) below, need orientation-dependent Gibbs-like cross product of vectors, ×, in spacetime
of dimension four. Gibbs’s cross product of vectors, ×, needs Hodge-star isomorphisms (or
duality). One Hodge-star acting on Grassmann’s multi-vectors, and another Hodge-star acting
on Grassmann multi-forms. Hodge star ‘?’ was invented by Hermann Grassmann under the
name Ergänzung, and denoted by vertical dash |, [Grassmann 1862, Chapter 3, §4-5]. In
1908 Minkowski denoted dual of F by F ∗. Star-notation, ?, dual of differential form F by
?F, introduced Hermann Weyl in 1945. Hodge-star isomorphism is a tensorial concomitant of
metric tensor-field g, and depends on a choice of orientation [e.g. duality in Misner, Thorne &
Wheeler 1973, §3.5; Kocik 1998 and WEB page; Oziewicz 1994; Cruz & Oziewicz 2003]. Cross-
product of vectors gives an orientation-dependent pseudo-vector, i.e. strictly speaking this is not
a binary operation.

In dimension three, binary cross product of vectors, u×v ≡ ?(u∧v), was invented by Clifford,
and was popularized by Heaviside in monograph Electromagnetic Theory [1893], and by Gibbs
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in Vector Analysis [1901]. However, Maxwell differential equations needs physical intensive and
extensive vector fields on four-dimensional spacetime, and spacetime was ‘not known’ explicitly
before Minkowski in 1908. Clifford-Gibbs cross product in dimension three is totally irrelevant
for electromagnetism, have nothing to do with the subject matter of electric and magnetic fields,
and it darkens ideas. Electromagnetic laws, four Maxwell’s differential equations, ponderomotive
force (called the Lorentz force), and relativity transformation of electric and magnetic fields, with
Gibbs cross in three dimensions, become a thoughtless mechanical set of strange formulas, and
this is mortal for electromagnetism and radiation in spacetime. Relativity transformation of
electric and magnetic fields, see Equation (11.3) below in §11, ponderomotive force , need cross
product of vectors in four-dimensional spacetime.

Generalization of cross product in arbitrary dimension was considered by Eckmann in
1942. Plebański with Przanowski in 1988 defined binary cross product of vectors in arbitrary
dimension, in terms of augmented quaternion-like algebra of para-vectors. However both these
attempts we consider not satisfactory because, among other things, orientation-dependence is
either lost or it is not explicit.

Minkowski’s definition of magnetic pseudo-field B needs Hodge-star isomorphism ? acting
on Grassmann’s multiforms. Hodge-star intertwine the Grassmann exterior multiplication, the
exterior wedge product acting on right, denoted by ePR ≡ P∧R, with interior product that is
dual to exterior, denoted by iP ≡ (eP)∗,

? ◦ eP = iP ◦ ?, eP ◦ ? = ? ◦ iP, (6.1)

P2 · id = eP ◦ iP + iP ◦ eP . (6.2)

For interior product we use also following abbreviation, iPF ≡ P · F.
6.1 Definition (Cross product in spacetime). Let A, B and P be vector fields on four-
dimensional space-time. Gibbs-like ‘binary’ cross-product, ×P, of vector fields, A and B, is
orientation-dependent, and P-dependent, and is defined in terms of the Hodge star map as
follows,

A×P B ≡ ? (A ∧P ∧B) = −B×P A. (6.3)

Hence, cross-product of vectors in dimension four, is a ‘ternary’ operation. The same
definition Equation (6.3) applies for covariant differential one-forms. In four-dimensional
spacetime, binary cross ×P depends on a choice of an auxiliary vector field P. This vector-
field-dependence of binary-cross in a spacetime, is of crucial importance for understanding. It
is either not realized or thoughtlessly suppressed, when presenting Lorentz transformations of
electric and magnetic fields, and when presenting ponderomotive (Lorentz) force as a tensorial
concomitant of the electromagnetic field and electromagnetic spin-charge density, see subsection
12.1.1 and expression Equation (12.6) below.

6.2 Exercise. Let P2 = −1, w ·P = 0, and P ·E = 0. Then

w×P {w×P E} = w2 E− (w ·E)w. (6.4)

7. Minkowski in 1908: electric and magnetic fields are concomitants
In 1908 Minkowski introduced electromagnetic field as a differential bi-form F on spacetime.

A differential biform of electromagnetic field, F (or a bivector field F, F ≡ g∧F), are often called
the Faraday tensors, however they were introduced in 1908 by Minkowski (1864-1909), and not
by Michael Faraday (1791-1867).

It is convenient to consider electric and magnetic fields also as differential one-forms on four-
dimensional spacetime, denoted by italics letters, E and B, instead of corresponding vector
fields, E and B, where E ≡ gE, etc.
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7.1 Definition (Electric and magnetic fields). [Minkowski 1908, Part II: Electromagnetic
Phenomena, §11.6] Let observer Paul be given by time-like vector field P, and can also be
given as a time-like differential one-form, denoted by italic letter P ≡ gP. These are fields on
four-dimensional Lorentzian space-time with a metric tensor g.

Minkowski defined electric and magnetic fields on four-dimensional spacetime as differential
one-forms being the following observer-dependent concomitants,

E(F,Paul) ≡ P · F,
B(F,Paul) ≡ ? (P ∧ F ) = P · (?F ), ?B(F, P ) = P ∧ F.

(7.1)

Electric and magnetic fields are concomitant of two variables, they are F -dependent (depends
on electromagnetic sources via Maxwell equations), and they are observer-dependent (depends
on time-like Paul- reference system).

7.2 Exercise. Set E ≡ E(F,P) and B ≡ B(F, P ). As a corollary we have in particular the
following relation,

EP = 0 = E ·P, BP = 0 = B ·P, (7.2)

(?F )2 ' −F 2, −F = P ∧ E + ? (P ∧B), (7.3)

E2 = (P · F )2 = P 2F 2 − (P ∧ F )2,

B2 = (P · ?F )2 = P 2(?F )2 − {?(P · F )}2.
(7.4)

Minkowski’s definition 7.1 was re-invented by number of authors, e.g. [Fecko 1997; Kocik
1998; Ivezić 2003; Cruz and Oziewicz 2003; Hehl and Obukhov 2003, §B.2.2 page 123, Definition
(B.2.10)]. Hehl and Obukhov denoted observer vector field by ‘n’ in Hehl’s (B.1.22), see pages
115-117, and depart from Minkowski Definition 7.1 in two respects. Firstly, Hehl and Obukhov
are metric-free except of Chapter E.4. Their observer n is restricted by transverse condition for
a given ‘would-be-time σ’ scalar field on page 115. This is similar to an idea that an observer
is an idempotent endomorphism field, n ⊗ dσ, with trace(n ⊗ dσ) = 1 [Świerk 1988; Kocik
1998]. Many-observer, many-body metric-free kinematics generated by trace-class idempotents
we considered in [Oziewicz 2007].

Secondly, Hehl and Obukhov stress that electric and magnetic fields are in three-dimension
and not on spacetime [Hehl and Obukhov 2003, after (B.2.9) on page 123]. In Minkowski
definition 7.1 electric field is on four-dimensional spacetime.

We must emphasize essential difference of Minkowski’s 1908-Definition 7.1 when compared
with other textbooks. According to Minkowski, electric field E is F -dependent and observer-
dependent, depends on electromagnetic field, E = E(F,P). Electromagnetic field F is absolute
(observer-free), and electric field is derived concept that is observer-relative.

7.3 Misleading ‘definition’ (Electromagnetic field strength). In some textbooks, one can find
the following ‘definition’

Fαβ ≡


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
−Ez −By Bx 0

 (7.5)

See for example [Sommerfeld 1948, 1964 §26 B and C; Landau and Lifshitz since 1951, edition
1975, formula (23.5) on page 61; M6oller 1952 §53 page 141; Fock 1955, 1961 §24; Tonnelat 1959
Chapter 9; Jackson, since 1962, last edition 1999 formula (11.137); Barut ‘Electrodynamics’
1964, 1980, page 96].
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What means ‘definition’ Equation (7.5)? Authors explain: on the right there are ‘well known
time-dependent three-dimensional’ electric and magnetic fields, denoted by E(r, t) and B(r, t),
as primary concepts given in terms of basis-dependent components, E = {Ex, Ey, Ez} and
B = {Bx.By, Bz}. Whereas we consider that electric field is basis-free. On the left is new ‘tensor’
F defined in terms of ‘well known time-dependent three-dimensional’ electric and magnetic
fields, i.e.F = F (E,B), so electromagnetic field is defined as E-dependent and B-dependent.

Time-dependent electric field E must be vector field on four-dimensional spacetime,
independently of how many basis-dependent components vanishes. Definition 7.5 suggest that
time-component Et vanishes or it is not known, or maybe E is in fact a time-dependent field
on three-dimensional space? But in fact this never appeared time-component is nothing but
Et = E · P a scalar product with suppressed observer P. We have the Minkowski conditions
E ·P = 0 = B ·P, i.e. electric and magnetic fields are P-constrained. Such observer-constrained
vector field on four-dimensional space-time Ivezić call ‘3D’ quantity, and we consider that this
name is misleading.

One can try to interpret ‘definition’ Equation (7.5), as well as Sommerfeld’s six-vector, as
follows. Primary concept must be observer, electric and magnetic fields needs observer as the
constraint, and then electromagnetic field in Equation (7.5) must be also observer-constrained,
FP,

observer ↪→ electric and magnetic ↪→ electromagnetic, (7.6)

P ↪→ E ·P = 0 = B ·P ↪→ FP(E,B) ' F (P,E,B). (7.7)

Let look for explicit P-dependence of electromagnetic field FP in Equation (7.5). This task
has the well known analogy in basis-dependent theorem.

Using identity Equation (6.2) [Minkowski 1908 §11.6 identity (45)] and the Minkowski
definitions Equation (7.1), Minkowski deduced the following theorem [Minkowski formulas
(55)-(56)],

F = id F ' E(F ) ∧ P − iP ? B(F ). (7.8)

Minkowski’s theorem Equation (7.8), some textbooks takes naively as the definition 7.5 of
observer-dependent electromagnetic field,

F (P,E,B) ≡ E ∧ P − iP ? B, with E · P = 0 = B · P. (7.9)

Coordinate-free and basis-free definition Equation (7.9) is equivalent to matrix ‘definition’
Equation (7.5).

In textbooks that accept ‘definition’ Equation (7.5), electric field E is observer-constrained
vector field on four -dimensional space-time E · P = 0. Scalar components, Ex ≡ (dx)E = Ex,
Et ≡ (dt)E = Et, etc, are E-dependent. But we must be careful here, because these textbooks
consider that vector depends on his scalar components! For example, some authors consider that
expression E = Ex∂x + . . . , is a definition (whereas it is a theorem!). These textbooks consider
that on the right there are obvious and clear physical basis vector i ≡ ∂x (dogma that basis is
physical and not mathematical), and measurable scalar field Ex ≡ (dx)E, whereas on the left
there is an ‘artificial’ symbol, E, that must be understood as a function of Ex, i.e. it is insisting
that vector E is nothing but a set of components E ≡ {Ex, Ey, Ez, Et} and vector E = E(Ex, . . .)
is Ex-dependent. When we change Ex then such vector E must change, E(Ex, . . .). It is hard to
find worse case.

In fact, theorem, E = Exi + Ey j + Ezk + . . . , must be understand that a vector E and a
basis {i, j,k, . . .}, are independent concepts, and scalar component Ex is E-dependent, and is
basis-dependent, Ex(E, i, j,k, . . .),

Theorem: E = Ex(E, i, j,k, . . .) i + Ey(E, i, j,k, . . .) i + . . . (7.10)

7th Biennial Conf. on Classical and Quantum Relativistic Dynamics of Particles and Fields IOP Publishing
Journal of Physics: Conference Series 330 (2011) 012012 doi:10.1088/1742-6596/330/1/012012

13



The worst textbooks of algebra consider Equation (7.10) as the definition of a vector, without
aware that every vector of a basis is also a vector, and is impossible to define a vector E in terms
of another vector i, etc.

What means ‘definition’ Equation (7.5)? In order to define electromagnetic field F, we need
first to have primary electric and magnetic fields, that probably must have never more than
three components maybe, because component Et is absent in ‘definition’ Equation (7.5). Time-
dependence of such electric field is explicit in Maxwell equation, e.g. E = ∂tA + . . . , that must
read as Lie-Ślebodziński derivative of potential in direction of observer field, E = LPA−d(AP).
Such electric field with strange Et = 0 or Et 6= 0 must be known without of knowing Et, before
we can start to define electromagnetic field F Equation (7.5). According to some lecturers I
knew personally F is artificial mathematical constructs that does not exists in Nature.

In present paper electromagnetic field F is primary concept, and it is E-independent, as state
by Minkowski in 1908.

Textbook presentations of four Maxwell differential equations hidden reference system.
Implicit reference system is a source of wrong interpretation of Maxwell equations by Dirac
suggesting magnetic monopol. The explicit observer-dependence is given in [Minkowski 1908;
Fecko 1997; Kocik 1998; Cruz Guzman & Oziewicz 2003].

8. Isometric relativity theory (not about gravity)
8.1 Definition (Minkowski 1908, Introduction and §11.6). Theory where material reference
systems are allowed to be connected by isometric Lorentz-group transformations only is said to
be the isometric relativity theory. Isometric relativity, or Lorentz-group relativity, is defined by
this only one postulate.

8.2 Clarification. The same definition of relativity theory was given by many authors:
Schrödinger 1931; Peter Bergmann 1942, page 159; Einstein 1949; V. Bargmann 1957 p. 161;
Barut 1964 Chapter I.6; Hehl and Obukhov 2003, §C.2, page 211.

It is worthy to emphasize that Albert Einstein in 1949 accepted Minkowski one-axiom
definition, and forget about his two 1905-postulates including constancy of light velocity.
Einstein separated special from general relativity in terms of properties of metric tensor. However
the very concept of relativity of observers has nothing to do with properties of metric tensor,
observers are relative independently of covariant derivative ∇g, independently of connections
{∇} and their curvatures and torsions.

8.3 Clarification. Often it is stressed incorrectly that relativity theory deals with inertial
material systems only. This dogma insist that between non-inertial material bodies does not
exist physically equivalent reference systems subject of relativity theory. Do Nature offer inertial
reference systems at all? or they are not-natural mathematical idealizations only? After all
condition to be inertial is differential condition on material system and it is hard to find in
abundant ‘special relativity’ bibliography at least one paper where this differential condition is
assumed and used. A material system P is said to be inertial if covariant derivative vanishes,
∇P = 0. Minkowski definition 8.1 hold for all material reference systems, including also non-
inertial ones, as already noted in [Logunov 1990, 2004]. Logunov define (special) relativity
theory as spacetime with absolute pseudo-Euclidean metric tensor g, and this implicitly implies
that only allowed transformations between material reference systems are g-isometries, as in
Minkowski Definition 8.1

8.4 Clarification. Definition 8.1 does not use a concept of relative velocity. Within such
axiomatic isometric relativity theory, relative velocity must lay in Lobachevsky factor space. It
was Vladimir Varićak in 1924 who developed non-Euclidean geometry as most natural structure
for relativity theory. We stress here important fact (overlooked by Varićak) that Lobachevsky
factor space is not unique, and this imply that relative velocity between given reference systems
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is also not unique, because every such relative velocity needs a priori a choice of Lobachevsky
factor space, and each choice is equivalent to privileged Æther.

Lorentz group is in fact equivalent to reciprocity principle: each velocity of reference
system R relative to an observer P, not unique vP,R in Lobachevsky factor-space, satisfies
reciprocity condition, vP,R = −vR,P. For not uniqueness of relative velocity vP,R we refer to
[Oziewicz 2007]. One can assume reciprocity of relative velocity, and deduce Lorentz group
transformations, see, for example [Silagadze 2008].

8.5 Clarification. One can define Lorentz isometry group either as:

• Acting on observers-frames-tetrads with Lorentz ‘passive’ action on scalar components
[Einstein 1905], for postulated absolute-vectors.

• Acting on individual covariant-vectors in Minkowski spacetime (when a basis is physically
meaningless), with a Lorentz ‘active’-action on the Lorentz-covariant tensor fields.

• Lorentz isometry group, as every isometry, does not act on manifold of events. This means
that all scalar fields are GL-invariant, and in particular they are Lorentz-invariant.

8.6 Clarification. In Section 12 we define an alternative to above group-relativity. This
alternative relativity theory is based on only one axiom that each ordered pair of material
reference system possesses only one unique relative velocity. This unique relative velocity
was introduced by Minkowski [Minkowski 1908 §11.6, before equation (46)], as the velocity of
matter. As the consequence of this axiom a set of all relativity transformations among material
reference systems is a groupoid that is not a group. This alternative relativity theory we call the
groupoid relativity. Domain of groupoid transformation does not include light-like and space-
like vectors. Therefore groupoid transformation do not extends to tensor algebra: it can not be
neither isometry nor violate isometry. Metric tensor need not to be postulated as absolute.

9. Minkowski in 1908: Lorentz-covariance
Hermann Minkowski in Part II Electromagnetic Phenomena [Minkowski 1908, §11.6, after

expression (44)], explains what Lorentz-covariance of a concomitant vector field, like Equation
(7.1), means on a four-dimensional spacetime manifold. Let F denotes bi-vector field, and α is
a differential Pfaff one-form (all tensor fields are on spacetime). Hence inner product can be
interpreted in many ways,

(F∗)α ≡ F ◦ eα ≡ α · F ≡ iαF. (9.1)

We repeat Minkowski’s text in our notation. Let GL denote general-linear group, and let
L ∈ GL. This means that L is an invertible endomorphism. GL-covariance, according to
Minkowski, means the following set of transformations,

iαF 7−→ L(iαF),

α 7−→ L∗−1α,

F 7−→ L∧ F.

(9.2)

Reader could ask why transformation of form must be ‘contragradient’? We assume that every
vector transform as P 7−→ LP, and that GL-action commute with contraction. All scalar fields
are GL-invariant, therefore

αP 7−→ L(αP) = (L?α)(LP) = (L?α ◦ L)P = {(L∗ ◦ L?)α}P = αP. (9.3)

(F∗)α ≡ iαF
transformation−−−−−−−−−−−−→ L(iαF) = iL∗−1α{L∧F} = (L∧F)∗(L

∗−1α)

= (L ◦ F∗ ◦ L∗) ◦ (L∗−1α), (9.4)
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(F∗)α 7−→ {(F∗)α}′ ≡ L((F∗)α) = (F ′∗)α
′. (9.5)

This is, up to notation, Minkowski’s definition of GL-covariance [Minkowski 1908, §11.6, after
expressions (44)]. Minkowski is considering Lorentz-covariance (and notation A for our L∗−1),
however, a concept of group-covariance is exactly the same for general linear group GL, as well as
for any subgroup of GL, for example for Lorentz-isometry subgroup, Og ⊂ GL, O(3, 1) ⊂ GL(4).

In 1908 Minkowski realized ‘pure mathematical formality’ [quotation from the first page of
his Introduction], that Lorentz transformation is an isomorphism of a vector space, then entire
algebra of tensor fields must be Lorentz-covariant. Every vector is Lorentz-covariant, and an
observer time-like vector field, also must be Lorentz-covariant. All tensor fields, F and P, must
be Lorentz-covariant. Lorentz transformation must act on all tensor fields, including time-like
vector fields. Hence electromagnetic field F, potential A, and Paul P, must be Lorentz-covariant.

Lorentz-covariance of concomitant tensor fields that are observer-dependent, like Lorentz
covariance of electric and magnetic fields, Equation (7.1), Lorentz covariance of charge
and current densities, Equation (12.7)-Equation (12.8), is misunderstood in textbooks on
electromagnetism. First definition of Lorentz-covariance of electric and magnetic fields, is
Einstein’s definition by means of transformation of coordinate basis in a system of four differential
Maxwell equations, ∂tE = rot B, etc., [Einstein 1905, Part II. Electrodynamischer Teil, pages
907-909; Bergmann 1942, page 106; Hamdan 2006]. A fact that four Maxwell equations depend
on a choice of observer, depend on a choice of a product structure (space ⊕ time)-split, was
realized by Fecko in 1997 and by Kocik in 1998, see also [Cruz Guzman and Oziewicz 2003].

For how Lorentz-covariance and Lorentz-invariance is understood one hundred years after
Minkowski we refer to [Arunasalam 2001].

10. Ivezić in 2005: Lorentz-covariance
In 2005 Ivezić re-discovered Minkowski’s ‘pure mathematical formality’ of Lorentz-covariance.

Ivezić’s version of relativity is coined invariant special relativity = ISR, where invariant is
synonym to be basis-free, as in [Misner, Thorne and Wheeler 1973, end of Chapter 2]. A tensor
field is basis-free, therefore with respect to a ‘passive’ action of Lorentz group on non-linear
manifold of bases-frames-tetrads, every tensor field is Lorentz-invariant. Such Lorentz-invariance
is misleading, if a mathematical basis has no physical interpretation: basis-free tensor is trivially
GL-invariant passively, and Lorentz isometry subgroup is here irrelevant. An alternative is to
try to interpret a mathematical basis as a physical-experimental concept; however, this is outside
of the philosophy of the present discussion.

Ivezić defined Lorentz-covariance of compound electric and magnetic fields, Equation (7.1),
exactly as defined by Minkowski in 1908 in §11.6, just before formula (46). We stress that
Minkowski in 1908 does not use in practice his definition of Lorentz-covariance. Lorentz
transformation of electric and magnetic concomitant vector fields, according to Ivezić definition
of Lorentz-covariance, is as follows.

Consider two reference systems, labeled P for Paul, and R for Rose, identified, following
Minkowski in 1908, with time-like vector fields on four-dimensional Lorentzian space-time with
a metric tensor g.

Space-like electric and magnetic fields (time dependent) as measured by Paul are denoted
respectively by, E(P) and B(P). Analogously, we denote electric and magnetic fields as measured
by Rose, by E(R) and B(R). It was assumed by Minkowski in [1908, §11.6], see Exercise 7.2
above, that

P ·E(P) = 0 = P ·B(P) and R ·E(R) = 0 = R ·B(R). (10.1)

In Eq. Equation (10.1), all vector fields are on a four-dimensional spacetime manifold: in order
to satisfy the differential Maxwell equations, time-dependence must be allowed.
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The question is: how are these electric and magnetic fields, Equation (10.1), which are due
to the same sources, but are measured by two different observers in relative motion, how they
are related?

The electric and magnetic fields are relative, they depend not only on electromagnetic sources,
via the Maxwell differential equations, but also on the choice of a material reference system, e.g.
the transformation Equation (10.4) or Equation (11.3) or Equation (12.15), that we are going
to discuss in details.

Let u be space-like velocity of Rose relative to Paul, u ·P = 0, [Minkowski 1908, §11.6, before
Eq. (46)].

10.1 Assumption. u ·P = 0,

E ≡ E(F,Paul)
B ≡ B(F,Paul)

}
Lorentz-boost−−−−−−−−−−−−→

{
EI ≡ E(F J ,Rose)
BI ≡ B(F J ,Rose)

(10.2)

E ·P = 0 = B ·P, EI ·R = 0 = BI ·R. (10.3)

10.2 Theorem (Ivezić 2005 page 307, formulas (8-9-10).

EI = E + γ
(
E · u

c

){
P +

γ

γ + 1

u

c

}
,

BI = B + γ
(
B · u

c

){
P +

γ

γ + 1

u

c

}
.

(10.4)

There are no formulae like, Equation (10.2)-Equation (10.4), in Minkowski’s paper in 1908.
In Equation (10.2)-Equation (10.16), a superscript I is for Ivezić. Minkowski never used his
definition of group-covariance in practice. Ivezić-transformed electric field is no longer orthogonal
to first observer, EI ·P = −γE · u/c, according to relativity condition Equation (10.3).

Proof-Hint. Ivezić’s transformation Equation (10.4) is specified case of well known Lorentz
isometry transformation of vector, see for example [Fock 1955, 1961 §24], with only one notable
difference, that in contrast to textbooks presentations here time-like observer P is explicit
variable, Lorentz-covariant.

In 1937 Élie Cartan noted that isometry can be generated by Grassmann bivector. Consider
the following bivector,

b ≡ P ∧ γu

c
, with P · u = 0 and P2 = −1. (10.5)

Let E be arbitrary vector. Isometry transformation of E, generated by above bivector, Lb, is as
follows [Oziewicz 2005, 2006, 2007, 2009],

LbE = E + γ
(
E · u

c

){
P +

γ

γ + 1

u

c

}
− (E ·P)

{
γ

u

c
+ (γ − 1)P

}
(10.6)

=⇒ R ≡ LbP = γ
(u

c
+ P

)
. (10.7)

Lorentz transformation of vector Equation (10.6) is nothing but, for example, Fock’s
transformation in [Fock 1955 or 1961, formulas (24.39)-(24.40)], or Jackson’s formulas (11.19)
in [Jackson 1962]. Namely, vector E can be P-decomposed as the sum of E⊥ that is orthogonal
to time-like observer P, and E‖, that is parallel to time-like observer,

E ' E⊥ + E‖, E⊥ ·P ≡ 0,

(LbE)‖ = γ
{

E‖ +
(
E⊥ · u

c

)
P
}
,

(LbE)⊥ = E⊥ +
γ2

γ + 1

(
E⊥ · u

c

) u

c
− γ(E‖ ·P)

u

c
.

(10.8)
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Let compare Equation (10.4) with derivation by Ivezić in [2005, page 307]. Ivezić used rotor
introduced in Clifford algebra by David Hestenes, for a simple bivector Equation (10.5),

R ≡ γ + 1 + b√
2(γ + 1)

, b ≡ P ∧ γu

c
. (10.9)

Denoting space-like relative velocity by, β ≡ u/c, and time-like observer by, γ0 ≡ P, Ivezić
in 2005 arrived to following expression

EI = 1
2(γ + 1)E + γ(E · β) P± 1

2
γ2

γ+1 βEβ. (10.10)

Last term in Equation (10.10) is Clifford product of three one-vectors,

βEβ = 2 (E · β)β − β2 E, β2 =
(γ + 1)(γ − 1)

γ2
. (10.11)

Plus sign in Equation (10.10) leads to Ivezić’s relativity transformation Equation (10.4).

10.3 Corollary.

(EI)2 = E2, (BI)2 = B2, EI ·BI = E ·B, (10.12)

(P + u/c) ·EI = 0, (P + u/c) ·BI = 0, (10.13)

P ·EI = −E · γu/c, P ·BI = −B · γu/c. (10.14)

10.4 Corollary.

R ≡ γ
(
P +

u

c

)
=⇒ R ·EI ≡ 0. (10.15)

10.5 Corollary.

u ·E = 0 ⇐⇒ EI = E,

u ·B = 0 ⇐⇒ BI = B.
(10.16)

11. Absolute observer
Different electromagnetic fields, variable electromagnetic fields can be registered in the same

fixed reference system. Transformation of electromagnetic field dos not imply that an observer
must also be transformed.

11.1 Side remark. In 1905 and again in 1907 Albert Einstein derived relativity transformation
of electric and magnetic fields, transformations Equation (11.3) below, applying Lorentz
isometry-group to a system of four differential Maxwell equations. Landau and Lifshitz re-
derived transformations, Equation (11.3) below, without Maxwell equations [Landau and Lifshitz
1975, §24]. Whereas Hamdan re-deduced transformations Equation (11.3) using Maxwell
equations as Einstein did [Hamdan 2006]. We note that four Maxwell’s equations have already
a fixed observer assumed a priori [Fecko 1997; Kocik 1998].

Observer need not to be inertial, and isometry need not commute with differential d, therefore
Lorentz-covariance of four Maxwell differential equations that are observer-dependent is not
obvious.
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In this section we assume that differential biform of electromagnetic field F ‘would to be
Lorentz-covariant’. Lorentz group is subgroup of symmetry group of massless Maxwell equations,
thus maps solutions to solutions F 7−→ FL. But we will depart here from Lorentz-covariance
that action of Lorentz group on tensor algebra and on Grassmann algebra, and in particular
Lorentz-action on differential biforms, must be induced from action on vector fields. We
assume that Lorentz group does not acts on vector fields. Observers are assumed neither
Lorentz-covariant nor Lorentz-invariant. One can fix observer for variable electromagnetic
fields and variable electromagnetic sources. No such group-covariance is logically allowed.
In this meaning we do not need here Lorentz-covariance at all. After all one can consider
a priori transformations of electromagnetic fields not induced by isometries, but induced by
transformations of electromagnetic sources.

A change of electromagnetic field, F 7−→ FL, is interpreted as due to variable sources, due
to moving electric charges and magnetic spins, a source motion relative to a fixed observer
or relative to a fixed source. Electromagnetic source, charge-current density, need not to be
time-like, can be light-like as well as space-like, therefore it is a different concept then a material
time-like observer.

We accept Minkowski’s definition of concomitant electric and magnetic fields Equation (7.1),
where we assume that observer-monad Paul is fixed. Be fixed is not the same as to be
Lorentz-invariant. We depart from Lorentz-covariance, because presented below transformation
of biforms is independent of a choice of a fixed observers. Lorentz group is assumed do not acts
on observers.

11.2 Assumption.

F
transformation−−−−−−−−−−−−→ FL ≡ L ◦ F ◦ L∗,

E(F,Paul)
B(F,Paul)

}
transformation−−−−−−−−−−−−→

{
EL ≡ E(FL,Paul)
BL ≡ B(FL,Paul)

,
(11.1)

P ·E = 0 = P ·B, and P ·EL = 0 = P ·BL. (11.2)

In present section u is interpreted as a space-like velocity of moving charge-current relative
to Paul; i.e., a relative velocity as measured by a fixed time-like Paul, u ·P = 0.

11.3 Theorem. Above assumptions leads to following transformation of electric and magnetic
fields.

EL = γ
{

E(F ) +
u

c
×P B(F )

}
− γ2

γ + 1

{u

c
·E(F )

} u

c
,

BL = γ
{

B(F )− u

c
×P E(F )

}
− γ2

γ + 1

{u

c
·B(F )

} u

c
,

(11.3)

11.4 Clarification. Transformation Equation (11.3) must not be called the relativity
transformation because reference system, an observer vector field P is here fixed. There is
only one material reference system P = gP and two different massless electromagnetic fields
FL 6= F,

P ∧ E + ? (P ∧B) = −F 6= −FL = P ∧ EL + ? (P ∧BL). (11.4)

Transformed electric field with absolute (not covariant) observer is necessarily orthogonal to
fixed Æther-like observer, EL · P ≡ 0. Absolute Æther-observer P and his proper-time are
intact.

11.5 Corollary. (EL)2 − (BL)2 = E2 −B2.
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11.6 Clarification. Transformation Equation (11.1)-Equation (11.3) coincides formally with
given by observers-tetrads: Pauli 1921; Bergmann 1942, 1976; Sommerfeld 1948 §28; Fock 1955,
1961 §24, formulas 24.37-24.38 on page 102; Tonnelat 1959 Chapter 9; Jackson 1962, 1999,
formula (11.149); Landau and Lifshitz 1975 §24; Tisza 1976, Chapter 4 (4.1.31); Ingarden and
Jamio lkowski 1979, 1985 §18.2; Dvoeglazov & Quintanar Gonzlez 2006; Rousseaux 2008.

Jammer in monograph [1961, Chapter XI], interpreted relativity transformation as
coordinate-change that transform the D’Alembert wave differential equation on four-
dimensional spacetime into Poisson equation in three-dimensional space. We disagree with
such interpretation [Oziewicz 2008].

John Field in 2006, considering a moving charge, derived another scalar factor at u ·E, just

γ, instead of γ2

γ+1 as it is in Equation (11.3):

B(static charge) ≡ 0, E ≡ E(static charge),

E(moving charge) = γE− γ
{u

c
·E
} u

c
.

(11.5)

Group-free derivation of transformation by Heaviside, by Thomson, and by Field in 2006, need
not be the same as due to isometry.

11.7 Clarification. In 2005 Ivezić observed logical and mathematical inconsistency of textbook
treatments of Lorentz-covariance. He noted that it is illogical to consider a closed differential
biform F to be Lorentz-covariant, and at the same time, keep observer’s time-like vector field, a
‘4-velocity’, P ' (1, 0, 0, 0)) ' γ0, to be Lorentz-absolute (not Lorentz-invariant and not Lorentz-
covariant). For example, compare how absolute observer is hidden in calculations presented in
[Misner, Thorne and Wheeler 1973, Chapter 3].

Proof of Theorem 11.3. Our ‘proof’ is not conceptually correct, because we use covariance as
Grassmann algebra map, Equation (11.7)-Equation (11.8) below, and we only hope that such
transformation of differential biform of electromagnetic field F 7−→ FL (without transforming
vectors) can be deduced from transformation of electromagnetic sources.

Let L be endomorphism of a module of vector fields. L extends to Grassmann algebra
morphism L∧. L-covariance means exactly that L extends to tensor-algebra morphism,
Grassmann-algebra morphism and that L commute with evaluation. Let ‘e’ denotes left regular
(adjoint) representation of Grassmann algebra, ‘e’ is for Grassmann’s historical extension,
exterior, creator. Grassmann algebra morphism means the following covariance-rule

∀ multivectors P,R, ePR ≡ P ∧R, (11.6)

L∧ ◦ eP = eL∧P ◦ L∧ ⇐⇒ iP ◦ L∗∧ = L∗∧ ◦ iL∧P. (11.7)

Consider electric field as defined by Minkowski in 1908, Definition 7.1,

E ≡ iPF 7−→ EL ≡ iPFL = iP L
∗∧F = L∗{iLPF}. (11.8)

The decomposition Equation (11.4) for u ·P = 0 gives

iuF = iuB(P ) + {E(P )u} gP. (11.9)

We now use Equation (10.5)-Equation (10.7). This gives transformation Equation (11.3).
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12. Groupoid relativity is isometry-free
Since 2005 we are trying oppose dogmatic trend, that set of all relativity transformations

acting on material observers, must coincide with Lorentz isometry group. Lorentz isometry
group must act on all vectors, also on light-like vector, that can not be reference system. We
argue, hence, that material reference systems need not to be necessarily connected by isometry
[Oziewicz 2005, 2006, 2007]. Among others, Poincaré group is symmetry group of metric tensor
of empty energy-less space-time.

12.1 Definition (Groupoid category). A category consists of family of objects and family of
arrows/morphisms. Category with every morphism being isomorphism, with two-sided inverse,
is said to be groupoid category. In particular, a group is a groupoid one-object-category.

12.2 Definition (Relativity groupoid). Let each object of a groupoid be a material body, not
necessarily inertial, given in terms of future directed g-normalized time-like vector field, for
instance as in Minkowski’s Definition Equation (5.2). Two material bodies in a relative rest
are considered to be the same one body - one reference system. Let each morphism be unique
binary relative velocity as follows,

If P2 = −1 and P · u = 0 then: P
u−−−−→ R = γ

(
P +

u

c

)
, (12.1)

u(P 7→ R)

c
≡ −P− R

P ·R
, (12.2)

This groupoid category is said to be the relativity groupoid.

Each pair of elements of a group is composable. In contrast, this is not the case for
morphisms/arrows in a groupoid with more than one object. Consider four massive observers-
monads, objects, P,R,Q, and S, with R 6= Q and S 6= P.The groupoid arrows, P 7−→ R, and,
Q 7−→ S, are not composable.

Minkowski’s basis-dependent expressions [Minkowski 1908 Part II §8 (27)] and [Minkowski
1908 Part II §11.6 (46)], see Equation (5.1), must be understand as basis-free groupoid
transformation Equation (12.1). Groupoid transformation, Equation (12.1)-Equation (12.2),

we propose in Thesis by Świerk [1988]; and these expressions are foundation of monograph by
Matolcsi [1994, Part II, §4.2, page 191]. Hehl and Obukhov’s expression (E.4.10) in [2003, page
349], is essentially the same as Equation (12.1)-Equation (12.2). See also [Oziewicz since 2005].

Groupoid kinematics is basis-free, and postulate that electromagnetic field is absolute, i.e.
that closed differential biform F, is observer-free for arbitrary non-inertial observer [Minkowski
1908, §11.6; Cruz & Oziewicz 2003; Oziewicz 2005, 2006, 2007]. Axiom of absolute F, is within
the principle of absolute reality by Giovanni P. Gregori [2005, page 12], stating that physical
reality of Nature is observer-free, that laws of Physics and Mathematics are absolute and do not
need existence of observers = humans. Postulate of absolute electromagnetic field F is contrary
to basis-free relativity, where closed differential bi-form of electromagnetic field, F, must be
Lorentz-covariant (not absolute).

In a groupoid kinematics electromagnetic field is postulated to be absolute, i.e. observer-free,
and we have,

E(F,Paul)
B(F,Paul)

} groupoid action
not isometry

−−−−−−−−−−−−−−−−−−→
{

EM ≡ E(F,Rose)
BM ≡ B(F,Rose)

. (12.3)

In Equation (12.3)-Equation (12.15), a superscript ‘M’ is for Minkowski.
Minkowski’s implicit assumption, that F is observer-free, implies that relativity

transformation of observer-dependent electric and magnetic fields is different when compared
with the following cases:
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• Lorentz-transformation of electromagnetic field with a fixed observer, Theorem 11.3.

• Minkowski’s Lorentz-covariance in Ivezić’s ‘invariant special relativity’ ISR-theory Equation
(10.2)-Equation (10.16), [Ivezić 2003, 2005]. Transformation of electromagnetic field is
induced from transformation of observer. Both transformations are related. One can chose
any observer for a given electromagnetic field, but group-covariance require that every
group action on observer must be together with induced action on electromagnetic field
Equation (9.2).

12.1. Sources of electric and magnetic fields: spin
12.1.1. Ponderomotive force as a sum of three terms Observer-independent source vector field
J is a sum of observer-dependent vector magnetic spin s and a scalar punctual charge density ρ
as follows

J = s(R)−R ∧ ρ(R) = s(P)−P ∧ ρ(P). (12.4)

Analogously observer-free electromagnetic field, a differential bi-form F is a sum of observer-
dependent magnetic field B and electric field E [Minkowski 1908 §11.6 identity (45)],

P ≡ gP and R ≡ gR =⇒ F = B(R)−R ∧ E(R) = B(P)− P ∧ E(P). (12.5)

Therefore observer-free ponderomotive differential form (identified with the Lorentz force)
consists of three terms, because magnetic field does not interact with a scalar charge density,
ρ iPB ≡ 0, whereas an electric field E interact both with charge and with magnetic spin giving
also time-like contribution

J · F = −ρE + s ·B + (E s)P. (12.6)

12.1.2. Convection weaker within groupoid. Let u be a space-like velocity of Rose relative to
Paul, i.e. a relative velocity as measured by Paul, u ·P = 0.

12.3 Theorem. Electric punctual charge-densities, scalar fields ρ(P) and ρ(R), and vectors
magnetic spin- and current-densities, s(P) and s(R), as measured by these two observers are
related by means of groupoid transformation as follows

ρ(R) = γ
{
ρ(P) +

u

c
· s(P)

}
, (12.7)

s(R) = s(P) + ρ(P)
{
γ2

u

c
+ (γ2 − 1)P

}
+ γ2

(u

c
· s(P)

)(
P +

u

c

)
. (12.8)

The relativity transformation of the scalar charge-densities Equation (12.7), coincide with the
Lorentz-group covariant transformation, compare for example with [Tonnelat 1959, Chapter 9,
formulas (9.3) and (9.4).] Whereas the transformation Equation (12.8) differs from the Lorentz-
group transformation, and follows from the groupoid kinematics considered here.

When s(P) = 0, then s(R) is purely convection current density,

Electric convection = ρ
{
γ2

u

c
+ (γ2 − 1)P

}
, (12.9)

|Electric convection| =

{
(γ2 − 1) ρ within groupoid,√
γ2 − 1 ρ within Lorentz group.

(12.10)

Formula Equation (12.9) is within groupoid relativity prediction. We see that the electric
convection current due to the charge in the motion, within groupoid relativity, contains only
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even powers of relative velocity, Equation (12.12). This must be compared with the Lorentz
transformations within the isometric special relativity, where the electric convection is predicted
to be stronger
for |uc | << 1, √

γ2 − 1 =
∣∣∣u
c

∣∣∣ γ, (12.11)

(γ2 − 1) '
∣∣∣u
c

∣∣∣2 +
∣∣∣u
c

∣∣∣4 + . . . ,
√
γ2 − 1 '

∣∣∣u
c

∣∣∣1 + 1
2

∣∣∣u
c

∣∣∣3 + . . . (12.12)√
γ2 − 1 = γ2 − 1 ⇐⇒

∣∣∣u
c

∣∣∣ = 0 or
∣∣∣u
c

∣∣∣ =
1√
2
. (12.13)

12.2. Lorentz-covariance-free magnetic and electric fields
12.4 Theorem (Minkowski 1908, §11.6). Let E(R) and B(R) be electric and magnetic fields
measured by Rose = γ(P+ u/c), Definition Equation (5.2). Let, E ≡ E(P), and B ≡ B(P), be
the electric and magnetic fields as measured by Paul. According to Minkowski definition Equation
(7.1)

P ·E(P) = 0 = P ·B(P) =⇒ R ·E(R) = 0 = R ·B(R). (12.14)

Then, these fields are related by means of the following covariance-free transformation,

EM ≡ E(R) = γ
{

E(P) +
u

c
×P B(P)

}
+ γ

{u

c
·E(P)

}
P,

BM ≡ B(R) = γ
{

B(P)− u

c
×P E(P)

}
+ γ

{u

c
·B(P)

}
P.

(12.15)

Note that transformations of electromagnetic sources, electric charge and spin-current
densities, as given early in Equation (12.7)-Equation (12.8), are covariance-free, in the same
manner as Equation (12.15).

The groupoid transformation, Equation (12.2) → Equation (12.3) → Equation (12.15), is
induced on concomitants from the primary action on massive observers-monads, on time-like
vector-fields only, Equation (12.2). The transformation of concomitant-fields Equation (12.15)
were derived by Minkowski in [1908, §11.6, his Eqs. (47-48) and (51-52)]. Minkowski did
not make it clear that such transformation among massive observers, Equation (12.2)-Equation
(12.15), is not an isometry, because, among other, the domain do not include light-like vectors.
The Minkowski groupoid transformations, Equation (12.2)-Equation (12.15), are not the Lorentz
transformations.

Hamdan, University of Aleppo in Syria, died tragically in 2008. Hamdan similarly, considered
in 2006 that a transformation of monads, Equation (12.2), is a Lorentz transformation, [Hamdan
2006, Eqs. (8a-8b)]. In fact this is a groupoid transformation, because a vector P must be time-
like, and not all such transformations are composable. Besides, one can show directly that the
groupoid transformation is not an isometry. For example, consider a pair of monads, P 6= Q, as
follows,

P · u = 0 = Q · u, together with the groupoid isomorphisms,

P
u−−−−→ γ

(
P +

u

c

)
, and, Q

u−−−−→ γ
(
Q +

u

c

)
, (12.16)

P ·Q u−−−−→ γ2
(
P +

u

c

)
·
(
Q +

u

c

)
= γ2P ·Q + γ2 − 1 6= P ·Q. (12.17)

This shows that a groupoid transformation of monads is not an isometry.
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Let’s compare the Lorentz-covariant electromagnetic field, F 7−→ FL, with fixed observer-
monad-Æther, Equation (11.1)-Equation (11.3), and non-isometric groupoid transformation of

monads, P
u−−−−→ R, with an observer-free electromagnetic field F, Equation (12.2)→ Equation

(12.3)→ Equation (12.15), where transformation of observers is not related with transformation
of electromagnetic fields. The only visual difference are terms containing the scalar products,
u · E and u · B. These terms within ‘Æther’ Equation (11.3), are proportional to space-like
relative velocity u. Within relativity groupoid these terms give time-like contributions.

If spacelike relative velocity u is orthogonal in spacetime to electric and magnetic vector
fields, then Equation (11.3) coincides with prediction of groupoid relativity in Theorem 12.4,

if, u ·E(F ) = 0 = u ·B(F ) =⇒ u ·E(F J) = 0 = u ·B(F J). (12.18)

12.3. Experimental consequences
There are the following consequences,

u×P B = 0 =⇒ (12.19)

For fixed ‘Æther’: EL ·E− γE2 = − γ2

γ + 1

(u

c
·E
)2
. (12.20)

Within relativity groupoid: EM ·E− γE2 = 0. (12.21)

Whereas within Lorentz-covariance á la Minkowski 1908, ∀ u, and ∀ B, Equation (10.4),
there is [Ivezić 2005],

EI ·E−E2 = +
γ2

γ + 1

(u

c
·E
)2
. (12.22)

The differences among three theories are of the second order β2, for β ≡ u
c ,

γ ' 1 + 1
2β

2 + . . . , γ2

γ+1 '
1
2 + 3

8β
2 + . . . , (12.23)

E(u) ·E−E2 = 1
2


β2 E2 − (E · β)2 fixed ‘Æther’ Equation (11.3)

(E · β)2 Ivezić’s group-covariance

β2 E2 groupoid relativity.

(12.24)

We need to stress again that in expressions Equation (12.20)-Equation (12.22), the electric
field measured by an observer ‘at rest’, and electric field measured by a moving observer-monad,
within the three different relativity theories, all are the vector fields on four-dimensional space-
time manifold,

E, EJ , EI , EM ≡ E(Rose), and u. (12.25)

In a randomly chosen not-adopted mathematical basis, each of these vector fields Equation
(12.25) possesses four non-zero scalar components. In terminology used by Ivezić, the fields,
E and EJ ,EI ,EM , etc, in Equation (12.20)-Equation (12.22) and in Equation (12.25), are ‘4D-
quantities’.

Note that there are the following implications{
u ·E(P ) = 0
u ·B(P ) = 0

}
=⇒

{
u ·E(R) = 0
u ·B(R) = 0

}
=⇒

{
P ·E(R) = 0
P ·B(R) = 0

}
=⇒ E(P ) ∧B(P ) ∧E(R) ∧B(R) = 0. (12.26)
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13. Conclusion
We propose an alternative for Einstein’s special relativity. We suggest that the set of all

relativity transformations between material reference systems (between time-like vector fields)
could be a groupoid that it is not a group. One consequence of this groupoid-relativity, that
is implicit in the Minkowski last publication in 1908 [Minkowski 1908 §11.6], is examined here
for groupoid transformation of electric and magnetic fields, Theorem 12.4 and Equation (12.15),
and for groupoid transformation of electromagnetic sources Equation (12.7)–Equation (12.8).
This consequence could eventually be tested experimentally.

In the present paper we also repeated essentially what in 1908 Hermann Minkowski explained
on Lorentz isometry group acting on vectors and on vector fields on space-time. The domain of
the Lorentz isometry are vectors, and Lorentz isometry transformation of vectors induce Lorentz
transformation of all tensor algebra except of scalar fields. The electric field is a vector field on
space-time (is time-dependent), and under Lorentz isometry must transforms as every vector
field. This (trivial) fact was independently re-discovered by Tomislav Ivezić [Ivezić 2003, 2005].

According to Minkowski and Ivezić, and according to present author, an electric field, as
a vector field on space-time is defined as dependent on the electromagnetic field tensor F,
i.e. E = E(F ). In 1908 Minkowski explained how Lorentz transformation of vectors induce
transformation of tensors, and how transformation of a tensor F induce the transformation of a
vectors built from other tensors.

Some present-day textbooks consider electric and magnetic fields as primary ‘time-dependent
three-dimensional vectors’, versus the primary electromagnetic field F introduced in 1908 by
Minkowski, i.e. some textbooks consider that F ≡ F (E,B), versus Minkowski’s E = E(F ) and
B = B(F ).

There are lecturers of electromagnetism (under name ‘electrodynamics’ with ‘magnetism’
removed by Ampère in 1828), convinced by definition of F (E,B) Equation (7.5) that
electromagnetic field F is artificial mathematical construction without physical contents, and
that in physical reality there are only electric E and magnetic B fields. Even this E must be a
strange vector field on space-time with permanent amputee component Et for not known scalar
field t. Such strange ‘amputee’ vector field on space-time is called by many textbooks a ‘3D’
quantity. This was called up by Tomislav Ivezić [Ivezić 2003, 2005, among other].
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Ivezić Tomislav 2003 The proof that the standard transformations of E and B are not the Lorentz transformations,

Foundations of Physics 33 1339
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Ivezić Tomislav 2006 Four-dimensional geometric quantities versus the usual three-dimensional quantities: the
resolution of Jackson’s paradox
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