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Abstract: The geometrical interpretation of gravitation in general theory of relativity imparts certain mystic-

al properties to the spacetime continuum. The mystic connotations associated with this space-time model 

may be attributed to the fallacious depiction of space-time as a physical entity. This paper proves that the 

spacetime continuum in GR is a simple mathematical model and not a physical entity. 

 

I.  NOTIONS OF SPACE AND TIME 

A.  Introduction 

The geometrical interpretation of gravitation in Gen-

eral theory of Relativity (GR) implies the spacetime conti-

nuum to be a physical entity which can even be deformed 

and curved. This misconception is quite deep rooted in the 

metaphysical eternalist viewpoint of existence in contrast to 

the logical presentist viewpoint. As per the eternalist view-

point, a so-called material object in a spacetime world is a 

continuous series of spacetime events, each of which exists 

eternally as a distinct part of the world. There is no distinc-

tion between the past, present and future. This is a block 

view of spacetime, in which the universe pre-exists at all 

future instants of time. As per the presentist viewpoint, the 

present moment is different from the past and future and 

that physical entities exist only in the present. The physical 

phenomenon does not exist in the past and the future re-

gions of time. The foundations of GR are critically depen-

dent on the integrity of the notion of spacetime as a physi-

cal entity. Albert Einstein had asserted in a ‗matter of fact‘ 

way, ―the world in which we live is a four-dimensional 

space-time continuum.‖
1
 According to GR, ―mass curves 

space-time, and space-time tells the mass how to move.‖
2
 In 

an interesting article, ‗Cosmological Constant, Space-Time, 

and Physical Reality‘, W. Schommers, has made a signifi-

cant observation, ―Spacetime is not a container for the inte-

gration of physically real objects, etc., nothing can be inside 

spacetime—no matter, no energy. Spacetime exclusively 

play the role of auxiliary elements for representing the pic-

ture of reality; spacetime can only contain geometrical posi-

tions, trajectories, etc., such as a sheet of paper.‖
2
  

Our dynamic universe is embedded in a three-

dimensional (3D) Euclidean space and its dynamic behavior 

or characteristic changes can be represented with an inde-

pendent time coordinate. Before considering the combined 

or interdependent features of space and time as a whole, we 

need to first examine different notions of space and time 

separately. Specifically we need to distinguish between the 

mathematical abstract notion of coordinate space and the 

physical notion of space as the container of physical ob-

jects, as the physical void in between an ensemble of ma-

terial particles.  

B.  Coordinate Space 

On a coordinate line OX, if we define line segment 

OA as the unit length, then length of a line segment OP can 

be defined as x times OA, where x=OP/OA. The associa-

tion of the set of points P on coordinate line X with the set 

of real numbers x, constitutes a coordinate system of one-

dimensional space, once the notion of certain unit length 

has been defined. The one-to-one correspondence of or-

dered pairs of numbers with the set of points in the plane 

X
1
X

2
 is the coordinate system of 2D space. Similarly, with 

a predefined notion of unit length, an essential feature of 

3D coordinate space is the concept of one-to-one corres-

pondence of points in space with the ordered triplet of 

numbers. The predefined notion of unit length or scale for 

different coordinate axes, constitutes the metric of space for 

quantifying the notion of distance and position measure-

ments of the sets of points in this coordinate space. 

We define a space (or manifold) of N dimensions as 

any set of objects that can be placed in a one-to-one corres-

pondence with the ordered sets of N numbers x
1
, x

2
,..., x

N
. 

Any particular one-to-one association of the points with the 

ordered sets of numbers is called a coordinate system and 

the numbers x
1
, x

2
, ...., x

N
 are termed the coordinates of 

points. In all coordinate spaces that are metrized, we asso-

ciate the notion of unit length along all coordinate axes and 

metric tensor components gij with each coordinate system. 

All essential metric properties of a metrized space are com-

pletely determined by this metric tensor.
3 

 However, it is 

pertinent to note here that at any given point P in space, it is 

not possible to physically measure the metric tensor com-

ponents or metric coefficients. We cannot even ‗define‘ the 

metric coefficients at point P without first defining the ‗cor-

responding‘ coordinate system. 

C.  Physical Space 

The notion of physical space implies the spatial exten-

sion of the universe wherein all material particles and all 

fields are embedded or contained. The true void between 
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material points is in essence the physical space, or empty 

space, or free space. It is important to note here that the 

coordinate space, along with its unit scale or metric, is our 

‗human‘ creation intended to facilitate the quantification of 

relative positions of material particles and fields. The exis-

tence of physical space does not depend in any way on the 

existence or nonexistence of coordinate systems and coor-

dinate spaces. Of course, for the study and analysis of phys-

ical space and the material particles and fields embedded in 

it, we do need the structure of coordinate systems and coor-

dinate spaces as a quantification tool. The most significant 

point to be highlighted here is that whereas the metric scal-

ing property is only associated with coordinate space, the 

physical properties of permittivity, permeability and intrin-

sic impedance are associated with physical space. The no-

tion of material particles and fields being embedded or con-

tained in the physical space, is generally accepted as valid. 

However, the detailed mechanism involved in this embed-

ding is not known. Obviously, such a mechanism must in-

volve the known physical properties of free space.
4
 

Fundamental known properties of this physical space 

or free space are represented by the following dimensional 

parameters. 

Permittivity of free space,      0 = 8.854 x 10
-12

 C
2 
/N. m

2 
 

Permeability of free space,    0 = 1.257 x 10
-6

  N / A
2 
 

The speed of propagation of EM waves in vacuum, 

  8

00 10998.21c   m/s 

The intrinsic impedance of vacuum,     

 000Z   =376.7 (N.m/C)/A=376.7 V/A  

            = 376.7 Ohms  

These four parameters, as dimensional constants, 

represent fundamental physical properties of vacuum or 

physical space. The speed ‗c‘ of propagation of electro-

magnetic disturbances is governed by the permittivity 0 

and permeability 0 constants associated with the physical 

space or vacuum. Since these four parameters are inter-

related, only two of them are independent. It is interesting 

to note that 0 can be replaced with Z0/c and 1/0 can be 

replaced with c.Z0 in all relations involving 0 or 0. These 

parameters are quite routinely measured experimentally and 

are universally well known. It may be emphasized here that 

these physical properties are not correlated with the metric 

tensor of the coordinate space and hence cannot represent 

the metric properties of the coordinate space. 

D.  Notion of Time 

Since our universe is inherently dynamic, there are a 

large number of physical processes in Nature which under-

go cyclic changes. The notion of time is associated with 

relative measurement of such changes. Depending on the 

consistency of such cyclic changes and the convenience of 

their measurement, we may select any one of them as our 

reference scale for relative measurement of change. The 

angular position of a planet in orbit, the position of a pendu-

lum oscillating about a mean and the vibrations of many 

electro-mechanical systems are all examples of physical 

processes that undergo cyclic changes. Any such cyclic 

process could be adopted as a reference scale for measure-

ment of change or the reference scale for time. In general, 

the study of natural phenomena invariably involves the 

comparative study of various changes. For this comparative 

study, we need to use a reference scale, or more correctly a 

reference time scale, for relative measurement of change. 

Hence time, as a relative measure of change, is an important 

parameter in the study of an essentially dynamic physical 

Universe. Existence of a uniform reference time scale can 

thus be attributed to the consistency of the physical cyclic 

process adopted for the reference scale.
5 

II.   GEOMETRICAL REPRESENTATION OF A RI-
GID 3D CONTINUUM 

A.  Invariance of Arc Element ds 

Let us consider a 3D continuum of space points 

representing the points of an ideal rigid material medium. 

All points in this space will be considered as invariant. A 

point P is determined by a set of coordinates x
i
 in a given 

reference frame. If the coordinate system is changed, the 

point P is described by a new set of coordinates y
i
, but the 

transformation of coordinates does nothing to the point it-

self, which remains invariant. A set of points, such as those 

forming a curve, is also invariant. The curve is described in 

a given coordinate system by an equation which usually 

changes its form when the coordinates are changed, but the 

curve itself remains unaltered, invariant. Similarly, a triply 

infinite set of points, constituting a rigid 3D space conti-

nuum, may also be considered invariant if an infinitesimal 

separation distance ds between any pair of neighboring 

points remains invariant under admissible coordinate trans-

formations. The notion of invariance of the arc element ds 

in all admissible coordinate transformations is most crucial 

in the representation of a rigid 3D continuum. Since repre-

sentation of vectors and tensors in the Euclidean geometry 

rely on the invariance of arc element ds, it implies that the 

Euclidean 3D space is effectively treated as a rigid 3D 

space continuum. This invariance of an arc element ds, is 

given by, 

  ji

ij

2
dxdx)x(gds   



 dydy)y(g       (1) 

where gij(x) are the metric tensor components in X coordi-

nate system and  gαβ(y) are the metric tensor components in 

Y coordinate system. In an orthogonal coordinate systems, 

the value of a metric coefficients gii determines the magni-

tude of corresponding base vector ai as, iii ga  . 

B. Coordinate base vectors and metric coefficients 

Whereas a rigid 3D space continuum or the Euclidean space 

is essentially characterize by the invariance of an arc ele-

ment ds  in all admissible coordinate transformations,   the 
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FIG. 1.  Geometrical representation of a plane curve y=a xb on a 

uniform scale graph. 

specific coordinate system in use is essentially characte-

rized by the metric coefficients gij. For example, the non-

zero metric coefficients g
11

=1, g
22

=1, g
33

=1, characterize a 

rectangular Cartesian coordinate system (X,Y,Z) and g
11

=1, 

g
22

=r
2
, g

33
=r

2
sin

2
θ, characterize a spherical polar coordinate 

system (r,θ,ϕ). Further, as mentioned above, the individual 

metric coefficients in an orthogonal coordinate system, spe-

cify the unit scale or base vector of the corresponding coor-

dinate axis. To illustrate the influence of metric coefficients 

gij on the geometrical representation of space curves, let us 

consider a plane curve defined by equation,  

xay b  .                           (2) 

An x-y plot of this curve is shown in Fig. 1. Assuming a 

unit scale for both x and y coordinate axes, the arc element 

ds for this curve will be given by 
222 )dy()dx()ds(  ,              (3) 

which implies that the metric coefficients gxx and gyy are 

both unity for this coordinate plane. Now if we plot the 

curve of Eq. (2) on a log-log scale graph, the curve will take 

the form of a straight line, as shown at Fig. 2. Taking natu-

ral logarithm on both sides of Eq. (2), we get, 

)xlog(.b)alog()ylog(                            (4) 

Let us make following substitutions in Eq. (4): 

log(y) = Y ;  log(x) = X ; and  log(a) = A.          (5) 

Equation (4) will now take the form, 

Y = A + b X                (6) 

Taking differentials of Y and X, 

dY = dy/y    or dYeydYdy Y           (7) 

and     

dX = dx/x      or      dXexdXdx X                    (8) 

Substituting values of dy and dx from Eq. (7) and (8) in Eq. 

(3), we get 

2Y22X22 )dY(e)dX(e)ds(  2

YY

2

XX )dY(g)dX(g   (9) 

 

 

FIG. 2.  Geometrical representation of a plane curve y=a xb on a 

log-log scale graph. 

This shows that the modified metric coefficients gXX 

and gYY for the X-Y coordinate space are given by exp(2X) 

and exp(2Y) respectively. Hence the differential scale fac-

tors or the base vectors will be exp(X) along the X coordi-

nate and exp(Y) along the Y coordinate. The magnitude of 

this differential scale or the base vectors has also been 

shown in figure 2 along the X and Y coordinate axes. This 

illustrates the fact that any single-valued open curve can be 

represented as a straight line in a suitable coordinate system 

with appropriate differential scale or the base vectors. Of 

course, the straightening of arbitrary curves by selection of 

appropriate differential scales along coordinate axes is not 

the main issue here. The point to be stressed here is that any 

change in the differential scale along different coordinate 

axes results in corresponding change in the shape of geome-

tric curves represented with those coordinates. Therefore, 

we must not view the metric coefficients in any coordinate 

system, as some physical entities which could physically 

influence or change the shape of specified open curves in 

the Euclidean space. It is only the geometrical representa-

tion of such curves in a particular coordinate system that 

could get influenced by any change in differential scale or 

metric coefficients of that system. 

III.    GEOMETRICAL  REPRESENTATION  OF  A 
DEFORMABLE 3D CONTINUUM 

A. Metric representation of continuum deformation 

Let us consider a 3D continuum of space points 

representing the points of a deformable continuous material 

medium. The points in this space cannot be considered as 

invariant, but could be subjected to certain finite displace-

ments without creating any discontinuity. Let us use a coor-

dinate reference frame X for quantifying or defining the 

relative positions and displacements of points in this de-

formable space continuum. To begin with let us consider a 

point P(x
1
, x

2
, x

3
) in the un-deformed state of the conti-

nuum. Let r(x
1
, x

2
, x

3
 ) be the position vector of point P. Let 
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Q be a point in the neighborhood of P so that the vector 

from P to Q, written as dr, can be represented in the form, 
i

idxadr  ,               (10) 

where ai are the base vectors. Square of the arc element ds 

in the un-deformed state is given by,  
ji

ij

ji

ji

2 dxdxgdxdxaad.d)ds(  rr ,                   (11) 

where gij=ai.aj are metric coefficients in the un-deformed 

state of the continuum.  

 
FIG. 3.  Representation of displacement vector U in a deformable 

3D continuum. 

Now let us consider the deformed state of the 

continuum. In this state let the point P from the initial un-

deformed state get shifted to point P' and the neighborhood 

point Q shifted to the point Q'. Let r' be the position vector 

of point P', as illustrated in Fig. 3. This shift in position of 

neighborhood points P and Q to the positions P' and Q' is 

termed as displacement of these points and essentially 

constitutes the deformation of the continuum under 

consideration. Let us assume that rigid body motion (i.e. 

translation and rotation as a whole) of the continuum is not 

possible and all displacements of points constitute pure 

deformation of the continuum. In the deformed state, the 

vector from point P' to Q' written as dr' can be represented 

in the form, 

      i

idxbd r ,                                   (12) 

where, bi are the base vectors. Square of the arc element ds' 

in the deformed state is given by 

    ji

ij

ji

ji

2 dxdxhdxdxbbd.d)'ds(  rr ,              (13) 

where, hij=bi.bj are metric coefficients in the deformed state 

of the continuum. 

The displacement of point P to P' is represented by a 

displacement vector U and the corresponding displacement 

of its neighborhood point Q to Q' is given by the 

incremented displacement vector U+dU. The complete 

deformation of the continuum can be said to be fully 

determined when the displacement of every point P in the 

continuum is known or uniquely determined. The existence 

of displacement vector U at every point P, as a function of 

position coordinates, will constitute a displacement vector 

field U in the continuum. The displacement vector from 

point P to P' is given by the relation, 
i

i ua rrU ,                         (14) 

where u
i
 are the contravariant components of vector U. Dif-

ferentiating Eq. (14) we get, 

iiiii
ab

xxx














 rrU
         (15) 

Or,  i

ii xab  U                    (16) 

An infinitesimal deformed state of the continuum can 

be described as its strained state. The strained state is 

represented by a strain tensor E with its components eij de-

fined at every point P of the continuum. In the linear or 

infinitesimal theory of deformation, the strain tensor com-

ponents are computed from the covariant derivatives of the 

displacement vector. However, the strained state of the con-

tinuum can also be represented by the metric hij of the de-

formed sate. We can say that the deformable continuum is 

strained whenever arc element ds' given by Eq. (13) is dif-

ferent from the arc element ds given by Eq. (11). The cova-

riant strain tensor components eij are related to this differ-

ence through following relations.
3
  

ji

ijij

22 dxdx)gh()ds()'ds(  ji

ij dxdxe2 ,            (17) 

 where    jijiijijij aabbghe2                    (18) 

Ideally speaking, we should be in a position to obtain 

the displacement vector field U for the strained state of the 

continuum and then compute the components of the strain 

tensor and the modified metric. However, on physical con-

siderations we may fix or specify the components of the 

strain tensor or the modified metric first and then work out 

the displacement vector field U. Physical constraints de-

mand that the displacement vector field components must 

be finite, continuous, single valued and piecewise smooth 

functions of coordinates.  

B. Deformable Riemannian 3-D space   

The GR is based on Riemannian 3D space in which 

the points of the space continuum are not considered inva-

riant. In GR, the coefficients of metric tensor [hij] are ob-

tained from Einstein‘s Field Equations (EFE) and the Rie-

mann ‗curvature‘ tensor R
i
jkl computed from hij is non-zero. 

On the other hand, the Riemann tensor computed from the 

metric tensor [gij] of the Euclidean space, is always zero. As 

such the Riemannian 3D space of GR is defined to be a 

deformable space which is generally perceived as ‗curved‘ 

space. The Space-time continuum of the General Theory of 

Relativity is not a Euclidean Continuum.
1,6

 Obviously the 

Euclidean and Riemannian geometries cannot be trans-

formed into one another through admissible coordinate 

transformations. When a surface is represented in the para-

metric form by 2D surface coordinates, the intrinsic geome-

try of the surface is described by its 2D metric tensor. The 

Riemann tensor composed from the 2D metric coefficients 
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is non-zero for a curved surface and zero for a plane sur-

face. Let us critically examine the process under which a 

plane surface with Euclidean geometry can be changed over 

to a curved surface with Riemannian geometry.  

Consider a large circular metal ring of radius R, filled 

inside with a plane thin soap-film membrane. The intrinsic 

geometry of any small region of this film can be 

represented by a 2D flat metric with zero Riemann tensor. 

Let us now exert a steady pressure over a small localized 

region of this film by impinging an air jet in such a way that 

a small hemispherical bubble of radius r<<R is formed in 

this local region. The 2D surface of this hemispherical bub-

ble can be represented by a modified 2D metric with non-

zero Riemann tensor. Obviously, it is not difficult to visual-

ize that the localized hemispherical bubble induced by a 

steady external pressure is actually a deformed (elon-

gated/stretched) membrane with a curved surface in com-

parison to the un-deformed plane membrane in the sur-

rounding region. By moving the impinging air jet sideways, 

the location of the hemispherical bubble on the large plane 

membrane can be easily shifted. The state of deformation of 

the curved membrane in comparison to the plane membrane 

can be studied in detail by comparing the Riemannian me-

tric of the curved surface with the Euclidean metric of the 

plane surface. The essential point to be stressed here is that 

a plane membrane surface with Euclidean metric does get 

deformed into a curved surface with Riemannian metric 

under the influence of external pressure. Precisely in the 

same way it has been postulated in GR that ―flat‖ space 

with Euclidean metric gets deformed to a ‗curved‘ space 

with Riemannian metric under the influence of a steady 

state gravitational field.
4
 

IV. GEOMETRICAL REPRESENTATION OF DY-
NAMIC PHENOMENA AND TEMPORAL CHANGES 

Let us monitor some dynamic phenomenon over a 

period of time to study the changes occurring in that 

phenomenon and their causal connections if any. For that 

we need to take instant to instant ‗snapshots‘ of all relevant 

physical measurements over a period of time and then 

analyze the temporal changes in each of the relevant 

physical parameters.
7
 Most common and convenient 

method to study such temporal changes is to make a 

geometrical representation of such changes through 

graphical plots of relevant parameters with respect to time. 

Let us illustrate this approach with some simple examples. 

A. Geometrical Representation in XYT Coordinate 
Space 

Consider a particle motion along the X-coordinate. 

This motion can be represented through a distance-time 

curve or trace of distance-time data points (x1,t1; x2,t2; 

…xi,ti) on an X-T coordinate plane. The velocity and acce-

leration of the particle at any point along the X-axis will be 

represented by the slope and curvature of the trace at that 

point. Let us now consider a particle moving in a circular 

orbit in XY plane. The motion of this particle can be 

represented as a helical trace in a XY-T coordinate space. 

The velocity and acceleration characteristics of this particle 

will be represented by the geometry of helical trace in the 

XY-T coordinate space. An important point to be noted 

here is that the helical trace does not physically exist any-

where at any time; it is just a mathematical or graphical 

representation of the motion of a particle over a period of 

time. Another important feature of this graphical represen-

tation of distance-time data points is that the X-T or XY-T 

coordinate space is not metrized like the Euclidean space to 

ensure the invariance of space points [Eq. 1]. Here the dis-

tance and time scales, along their respective coordinates, 

can be fixed independently without any constraint on the 

invariance of arc element ds. That is, the metric coefficients 

gij of this XY-T coordinate space or manifold are not con-

strained by the invariance of arc element ds [Eq. 1]. What is 

invariant in this case is the data point set (xi,ti) which is 

represented by the plot or trace on the distance-time coordi-

nate space. The shape of this data curve can be varied arbi-

trarily by adjusting the individual coordinate scale or the 

metric coefficients of the distance and time coordinates 

independently. Hence, this data curve cannot be regarded as 

invariant under admissible coordinate transformations. In 

fact the notion of ―admissible‖ coordinate transformations 

itself cannot be valid without some invariance constraint on 

the arc element ds.  

However, it is possible to introduce an important con-

straint on the metric coefficients of the distance and time 

coordinates, on the lines of Minkowski space-time manifold 

as follows: 

        2

zz

2

yy

2

xx

2

tt

2 dzgdygdxgdt.cg)dS(   ,   (19) 

where dS is an invariant; gtt is the metric coefficient of the 

time coordinate; and gxx, gyy, and gzz are the metric coeffi-

cients of the X, Y and Z coordinates respectively. With the 

introduction of this constraint on metric coefficients, the 

distance and time scales get interlinked such that the trajec-

tory trace of the data point set (xi,ti) in the distance-time 

coordinate space, could become a geodesic curve in that 

space with specified metric coefficients. Further the con-

straint given by Eq. (19) also puts an upper limit c on the 

speed computed from any geodesic trace in the distance-

time coordinate space or manifold.  

B. Physical content of the coordinate planes  

A coordinate plane XY may be regarded as physically 

occupied when the points in the plane represent positions of 

various material particles or intensities of various interac-

tion fields. A coordinate plane may be regarded as physical-

ly empty when none of its points represent the position of 

any material particle or intensity of any interaction field. A 

physically empty coordinate plane is an abstract mathemat-

ical construct, whereas a physically occupied coordinate 

plane may be regarded as a physical entity. Let us consider 

a 2D (thin) metal sheet located in the XY plane of a rectan-
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gular Cartesian coordinate system XYT. Let the time axis 

extend from zero to infinity and let tp depict the present 

time on the time axis. Obviously, the tp marker is conti-

nuously moving away from the origin of the time axis. The 

time zone t<tp represent the past and the time zone t>tp 

represent the future. Now let us take a mental snapshot of 

the whole range of time axis. We find that the body of the 

metal sheet is physically located at t= tp and is not located 

anywhere in the past or the future time zones. That is, the 

XY plane representing a section of the XYT manifold at 

t=tp can be said to be physically occupied with the thin met-

al sheet and all other XY planes representing sections of the 

XYT manifold at t<>tp are physically empty. This is the 

standard presentist view of the XYT manifold as per which 

only the present (t=tp) section of the manifold represent the 

physical entities and not the whole manifold. As per this 

viewpoint, the physical state of the thin metal sheet at the 

next future instant (t=tp+δt), evolves from its present (t=tp) 

state through the operation of physical laws of nature, 

through the operation of cause and effect.  

On the contrary, as per the eternalist view of the XYT 

manifold, all XY sections of the manifold are supposed to 

be physically occupied with thin metal sheets. This eternal-

ist viewpoint represents a situation wherein the physical 

state of all matter particles and their interaction fields, is 

predetermined at all future locations of the metal sheet, or 

at all XY plane sections for t>tp of the XYT manifold. This 

predetermined physical state at all future locations of the 

metal sheet does not permit a causal evolution of the physi-

cal state with progression in time. Further, the notion of 

predetermined physical state of all matter particles and their 

interaction fields violates the fundamental principle of 

cause and effect which is the basis of all scientific study of 

the universe. Thus the eternalist viewpoint, depicting whole 

XYT manifold as a physical entity, is fallacious on the 

grounds of causality violation in the predetermined physical 

state of the thin metal sheet at all future instants of time.  

Suppose, we wish to study the motion of free electrons 

constrained on the surface of this thin sheet and want to 

obtain detailed representation for their trajectories or traces 

of their paths over a finite period of time. For this purpose, 

we may find it convenient to use 3D XYT manifold to 

represent the curved traces of the particles under study. 

While the particles under study are constrained to move in 

the 2D plane of the metal sheet, their instant to instant posi-

tion traces can be represented only in the 3D XYT mani-

fold. Study of the geometry of such curved traces can pro-

vide us valuable information on the velocities and accelera-

tions of the corresponding particles. However, the geometry 

of the XYT manifold cannot influence the free electrons 

constrained on the plane surface of the metal sheet but may 

influence the representation of their dynamic trajectories. 

The physical phenomenon is occurring only in the metal 

sheet constrained in the XY coordinate plane located at t=tp. 

There is no physical phenomenon in the past or the future 

time zones of the XYT manifold. Hence, logically the past 

and future time zones of the XYT manifold cannot be re-

garded as physical entities.  

C. Geometrical representation in XYZ-T spacetime 
manifold 

Let us now extend the analogy of 2D plane metal 

sheet discussed above, to the 3D physical space associated 

with our solar system. Suppose we wish to study the motion 

of particles contained within this space and want to obtain 

detailed representation for their dynamic trajectories or 

traces over a finite period of time. For this purpose, we may 

find it convenient to use 4D XYZ-T manifold to represent 

the instant to instant position traces of the particles under 

study. While the particles under study are constrained to 

move in the 3D physical space, their dynamic trajectories 

can only be represented in the 4D XYZ-T space-time mani-

fold. The geometry of these trajectories can be correlated 

with the dynamics of the corresponding particles. However, 

the geometry of the 4D XYZ-T manifold cannot influence 

the dynamics of particles contained in the 3D physical 

space but may influence the representation of their dynamic 

trajectories. The physical phenomenon is occurring only in 

the solar system constrained in the XYZ spatial section at 

t=tp of the XYZ-T spacetime manifold. There is no physical 

phenomenon in the past or the future time zones of the 

XYZ-T spacetime manifold. 

D. Physical content of the spatial sections of 
space-time manifold 

A coordinate space XYZ may be regarded as physical-

ly occupied when the points in the space represent positions 

of various material particles or interaction fields. A coordi-

nate space may be regarded as physically empty when none 

of its points represent the position of any material particle 

or interaction field. A physically empty coordinate space is 

an abstract mathematical construct, whereas a physically 

occupied coordinate space may be regarded as a physical 

entity. Let us consider the physical space of our solar sys-

tem located in a particular spatial section of a Cartesian 

space-time manifold XYZ-T. Let tp depict the present in-

stant on the time axis. Obviously, the tp marker is conti-

nuously moving away from the origin of the time axis.
8
 The 

time zone t<tp represent the past and the time zone t>tp 

represent the future.  

Taking a mental snapshot of the whole range of time 

axis, we find that our solar system is physically located at 

t=tp and is not located anywhere in the past or future time 

zones. That is, the 3D XYZ coordinate space representing a 

spatial section of the 4D XYZ-T manifold at t=tp can be 

said to be physically occupied with the solar system and all 

other 3D XYZ spatial sections of the 4D XYZ-T manifold 

at t<>tp are physically empty. This is the standard presentist 

view of the XYZ-T space-time manifold as per which only 

the present (t=tp) section of the manifold represent the phys-

ical entities and not the whole manifold. As per this view-

point, the physical state of the solar system at the next fu-
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ture instant (t=tp+δt), evolves from its present (t=tp) state 

through the operation of physical laws of nature, through 

the operation of cause and effect.  

On the contrary, as per the eternalist view of the 

spacetime, all 3D XYZ sections of the manifold are sup-

posed to be physically occupied with our solar system. This 

eternalist viewpoint represents a situation wherein the phys-

ical state of all matter particles and their interaction fields, 

is predetermined at all future locations of the solar system, 

or at all 3D XYZ spatial sections for t>tp of the 4D XYZ-T 

spacetime manifold. This predetermined physical state at all 

future locations of the solar system does not permit a causal 

evolution of the physical state with progression in time. 

Further, the notion of predetermined physical state of all 

matter particles and their interaction fields violates the fun-

damental principle of cause and effect which is the basis of 

all scientific study of the universe. Thus the eternalist view-

point, depicting whole 4D XYZ-T spacetime manifold as a 

physical entity, is fallacious on the grounds of causality 

violation in the predetermined physical state of the solar 

system at all future instants of time. Hence, the spacetime 

continuum is not a physical entity but just an abstract ma-

thematical notion which can neither influence any physical 

phenomenon nor can its geometry be influenced by any 

physical phenomenon. 

V.   CONTINUITY OF DISPLACEMENTS IN A      
DEFORMABLE SPACE CONTINUUM 

Let us, for a moment, accept the eternalist viewpoint 

and assume the 4D XYZ-T spacetime manifold to be a 

physical entity. This assumption can then be refuted by 

showing that a non-zero Riemann ‗curvature‘ tensor in GR 

always leads to incompatible deformations and discontinui-

ties in the space continuum. Whenever the Riemann tensor 

of a 4D spacetime manifold is non-zero, the metric coeffi-

cients of the space coordinates can no longer remain Eucli-

dean. That is because the distance and time scales get inter-

linked due to the invariance constraint of Eq. (19). Consid-

er, for example, a Minkowski spacetime manifold with Car-

tesian coordinates where all metric coefficients are unity 

and all spatial sections are Euclidean. If a particular solu-

tion of EFE yields gtt<>1 with gxx=gyy=gzz=1, then that solu-

tion will no longer satisfy the constraint of Eq. (19) as it 

will represent the speed of light propagation to be different 

from c in the Euclidean space. Hence in a 4D spacetime 

manifold, all metric solutions of EFE, with non-zero Rie-

mann tensor, must also satisfy the constraint of Eq. (19). 

This constraint will yield non-Euclidean spatial metric coef-

ficients, implying thereby that all 3D spatial sections of the 

‗curved‘ spacetime are deformable space continuum. In 

such a spatial section of the spacetime, let us consider a 

spherical polar coordinate system with origin at point O and 

the coordinate parameters r,  and . The metric coeffi-

cients for this coordinate system in the un-deformed or 

―gravitation-free‖ space continuum are given as, 

grr = 1 ,     g = r
2
 ,     g = r

2
.Sin

2
 ().         (20) 

The arc element or the separation distance ds between two 

neighboring space points P and Q (Fig. 3) in this region will 

be given by,  

     222

rr

2 dgdgdrg)ds(     

      222222
dSinrdrdr1                      (21) 

Now, let us assume that a spherically symmetric body 

of mass M and radius r0, is located at the origin O of this 

coordinate system. Due to the gravitational field in its vicin-

ity (i.e. r > r0 > 0), the modified metric coefficients hij are 

given by the Schwarzschild solution of EFE as 

rc

GM2
1

1
h

2

rr



  , 2rh  ,   

22Sinrh .           (22) 

Thus, the modified radial metric coefficient hrr at any par-

ticular space point P(r, , ) can be taken as a function of M 

and its value in the region under consideration is always 

greater than unity for M>0. The arc element or the modified 

separation distance ds' between two neighboring space 

point positions P' and Q' in this region will be given by  

     222

rr

2 dhdhdrh)'ds(       

            
 

    22222

2

2

dSinrdr

rc

GM2
1

dr




 .           (23) 

Therefore, using Eq. (18) we can compute the induced 

strain tensor components eij from the modified metric coef-

ficients hij as 

        2 err = hrr – grr = (1/(1 - 2GM/c
2
r)) – 1                   (24) 

with the factor 2GM/c
2
r <<1; Eq. (24) will get simplified to  

 err = GM/c
2
r,  e = h - g = 0,    e = h - g = 0,    (25) 

and     e = e = er = er = er = er = 0                    (26) 

This set of strain tensor components constitutes the strain 

field induced in the region of space continuum where the 

gravitational field of M has modified the metric coefficients 

to hij.  

A. Incompatibility of the induced strain compo-
nents 

For a complete description of the strained state of the 

space continuum, we must be able to uniquely determine 

the displacement vector field U from the specified strain 

tensor components. For this the strain tensor components 

eij, are required to satisfy a set of integrability or compati-

bility conditions. The displacement vector components ob-

tained from the integration of strain components, must be 

single valued, finite and continuous functions of coordi-

nates and must satisfy physical constraints over the boun-

dary of the region of space under consideration. It can be 

easily seen that the radial strain components err given by 

Eq. (25), with all other components being zero, cannot sa-
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tisfy the required compatibility conditions. In order to high-

light this problem, let us consider the relative displacement 

vector U that gives rise to the strain components err, e and 

e. If u
r
 is the only non-zero component of the displace-

ment vector U, then the strain components dependent on u
r
 

are given by, 

 err = ∂u
r
/∂r ;    e = u

r
/r   and    e = u

r
/r .            (27) 

Obviously, if the radial strain component err is non-zero, the 

radial displacement component u
r
 must be non-zero. But 

once the radial displacement component u
r
 is non-zero, the 

tangential strain components e and e cannot be zero. 

This precisely is the incompatibility of the strain compo-

nents err, e and e induced by the static gravitational field 

of a spherically symmetric body of mass M. Therefore, the 

specification of metric coefficients (22) as per the Schwarz-

schild solution is physically invalid and unacceptable on the 

grounds of incompatible induced strain components.  

Let us now examine whether this incompatibility is 

limited to the strain components induced by the Schwarz-

schild metric or is applicable to all strain components in-

duced by pseudo-Riemannian metric obtained from EFE. 

As noted above, all 3D spatial sections of the curved space-

time are also curved in the sense that the Riemann-

Christoffel tensor Rijkl composed from the spatial metric 

coefficients (hij) will also be non-zero. As shown in Eq. 

(18) above, the strain components eij are given by the dif-

ference between the Riemannian metric coefficients hij and 

the Euclidean metric coefficients gij of the undeformed con-

tinuum as 

          eij = ½{hij – gij}.                       (28)   

We need to examine the compatibility of the metric 

induced strain components eij. According to Saint Venant's 

integrability or compatibility conditions for a continuous 

media, the infinitesimal or linear strain tensor components 

eij must satisfy following differential equations.
3
  

eij,kl + ekl,ij – eik,jl – ejl,ik = 0      (with i,j,k,l →1to 3),          (29) 

If we compose Christoffel 3-index symbols [ij,k] of the first 

kind and k

ij of the second kind from the symmetric strain 

tensor components eij, then Eq. (29) can be written as 

    0j,klj,ki il  .          (30) 

The Riemann-Christoffel tensor Rjkli composed from strain 

components eij and expressed in terms of Christoffel 3-

index symbols, is given by 

          ,jl,jij,klj,kiR kikliljkli .           (31) 

Since Saint Venant's compatibility conditions (30) 

were developed for infinitesimal or linear strain compo-

nents, the products of strain components and their deriva-

tives could be neglected. However, in the general case of 

finite or nonlinear strain, the integrability or compatibility 

conditions are extended from Eq. (30) to include the prod-

uct terms as 

                 0,jl,jij,klj,ki kiklil    

Or,       Rjkli = 0                      (32) 

Thus to meet the standard compatibility conditions on finite 

strain components eij, the Riemann tensor composed from 

eij must be a zero tensor.
9
 This can be true only if both me-

trics of Eq. (28), namely, gij and hij, are Euclidean, which 

however contradicts the basic postulate of curved spacetime 

in GR. Hence, all strain components in the space conti-

nuum, induced by the pseudo-Riemannian metric, will fail 

to satisfy the integrability or compatibility conditions, lead-

ing to discontinuities in the induced displacements.
10

 There-

fore, if we assume the 4D spacetime manifold to be a physi-

cal entity, we end up with physically invalid discontinuities 

in the space continuum. Hence the 4D spacetime manifold 

cannot be a physical entity. 

VI.   SPACETIME MANIFOLD AS A GRAPHICAL 
TEMPLATE 

A.  Differential scaling of coordinate axes    

As already discussed in section II above, the shape of 

an exponential curve on a uniform scale graph can be 

changed to a straight line on a logarithmic scale graph. Due 

to the nonlinear or differential scaling of the coordinate 

axes, a function of the form y=a.x
b
 will appear as a straight 

line on a log-log graph. Let us plot the trajectory of an ob-

ject, falling vertically on a gravitating body of mass M, as a 

Y-T graph such that the Y-axis represents height and the T-

axis represents time. We find this trajectory to be a parabol-

ic curve. Now taking a cue from the log-log graph, we can 

choose a suitable differential scale along Y and T axes such 

that the parabolic trajectory changes into a straight line on 

the differential scale graph. This shows that the shape of 

free-fall trajectory of an object moving in a gravitational 

field, can be changed or adjusted through suitable adjust-

ment of the differential scale along the coordinate axes.  

However, such a change in shape of free-fall trajecto-

ry does not remain unique unless the differential scales 

along different coordinate axes are interlinked through 

some unique constraint. One such constraint imposed on the 

differential scales or the corresponding metric coefficients 

along different coordinate axes, is given at Eq. (19). If the 

differential scales or the corresponding metric coefficients 

are constrained through Eq. (19), then the shape of free-fall 

trajectory of an object moving in a gravitational field, can 

be changed to become a geodesic through suitable adjust-

ment of the metric coefficients. We may use such a diffe-

rential scale graph as a template for obtaining the geodesic 

trajectory of any other object falling vertically on a gravitat-

ing body of mass M.  

Let us now consider the trajectory of an object, falling 

in a Cartesian 2D X-Y plane on a gravitating body of mass 

M. The plot of this trajectory on a 3D XY-T linear scale 

manifold, will again be a parabolic space curve. We can 

choose a suitable differential scale or the metric coefficients 

along the X,Y and T axes, in conjunction with the inva-

riance constraint of Eq. (19), such that the parabolic space 
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trajectory on linear scale manifold, changes into a geodesic 

on the differential scale manifold. Let us make a template 

of this differential scale manifold. The differential scale or 

the magnitude of the unit vectors along any particular axis 

of an orthogonal coordinate system is given by the square-

root of the corresponding metric coefficient for that coordi-

nate axis. For obtaining the trajectory of any other object 

falling in X-Y plane on a gravitating body of mass M, we 

just need to set the initial position and velocity of this ob-

ject on the XY-T differential scale template manifold and 

compute the geodesic curve of the required trajectory. 

However, for computing trajectories of objects moving in 

the gravitational field of a body of different mass M', the 

differential scaling factor or the metric coefficients of the 

template manifold must be adjusted accordingly to account 

for different acceleration profile.  

B.  Differential manifolds to obtain geodesic       
trajectories   

We can extend this methodology for obtaining trajec-

tories of particles moving in 3D physical space, under the 

gravitational field of a gravitating body of mass M. For this 

we can first obtain a differential scale 4D manifold XYZ-T 

as a template by correlating its metric coefficients with the 

mass M, in conjunction with the invariance constraint of 

Eq. (19), such that the Newtonian trajectories in the given 

gravitational field appear as geodesic curves in this tem-

plate manifold. Now, to obtain the trajectory of any other 

object in the given gravitational field, we can set the initial 

position and velocity of the object in the template manifold 

and then compute the trajectory as a geodesic curve through 

that position. Of course, we need to adjust the differential 

scale or the metric coefficients of this template manifold 

according to the mass M of the gravitating body to account 

for different acceleration profiles. This is precisely what has 

been attempted through Einstein Field Equations (EFE) in 

the spacetime model of GR. Further, to ensure a constant 

speed of light propagation in all coordinates, a pseudo-

Riemannian 4D spacetime manifold, with an invariance 

constraint of Eq. (19), has been used in GR. This feature 

may be regarded as an improvement over the Newtonian 

gravitation, whereby the speed of propagation of gravita-

tional influence is limited to the speed of light.  

In GR, the pseudo-Riemannian 4D spacetime mani-

fold is used as an abstract mathematical differential scale 

template manifold for getting the trajectories of particles as 

geodesic curves. The differential scale or metric coeffi-

cients of this 4D template manifold are correlated through 

EFE with the mass-energy density in the physical space, to 

simulate the particle trajectories with geodesic curves in a 

gravitational field. It may be emphasized here that the cor-

relation between the mass-energy density and the metric 

coefficients of the 4D template manifold as established 

through EFE, is essentially an empirical correlation. That is, 

the EFE do not represent the correlation between the mass-

energy density and the metric coefficients of the 4D tem-

plate manifold that could be deduced from the application 

of any established law of physics. The validity of such cor-

relation between the mass-energy density and the metric 

coefficients of the 4D template manifold as established 

through EFE, can only be demonstrated through accurate 

simulation of particle trajectories with geodesic curves in a 

Newtonian gravitational field. Hence, only those solutions 

of the EFE can be regarded as of any practical significance 

which can accurately simulate the particle trajectories with 

geodesic curves in a Newtonian gravitational field. All oth-

er solutions of EFE may be regarded as speculative.  

The notion of spacetime curvature corresponds to the 

mathematical situation wherein Riemann tensor R
i
jkl com-

puted from the metric coefficients of the spacetime template 

manifold, is non-zero. The metric coefficients correspond-

ing to the non-zero Riemann tensor R
i
jkl, depict the differen-

tial or non-linear scaling along the coordinate axes, to en-

sure the geometrical representation of an acceleration pro-

file as a geodesic curve. In GR the 4D spacetime differen-

tial manifold has been projected as the ―real world‖ or a 

―physical reality‖ in which its metric is governed by the 

mass-energy content in space and the consequent geodesics 

in spacetime guide the motion of material particles in the 

physical space. Since in Newtonian gravitation the motion 

of material particles is governed by the local gravitational 

potential, the metric coefficients in spacetime manifold are 

effectively treated as gravitational field components, that 

govern the shape of geodesic curves. As such, the metric 

coefficients in spacetime manifold are also assumed to be 

physical entities in GR, which are mystically governed by 

EFE. This projection of the 4D spacetime differential mani-

fold as the real world constitutes the most crucial step in 

presenting the abstract spacetime model as a theory of gra-

vitation in GR. 

Hence, the general depiction of the non-zero value of 

Riemann tensor R
i
jkl as ―spacetime curvature‖ for enunciat-

ing a theory of gravitation, gives rise to following mislead-

ing connotations about 4D spacetime manifold. 

a) The 4D spacetime template manifold is assumed to be 

a physical entity, wherein the universe embedded in 3D 

physical space is supposed to exist at all points of the 

―time‖ axis. In this ―block view‖ of spacetime, the me-

tric induced deformation of the spacetime is perceived 

as spacetime curvature. However, this block view of 

spacetime violates the principle of causality and hence 

is invalid. Therefore, the 4D spacetime manifold of GR 

cannot be regarded as a physical entity. 

b) With non-zero Riemann tensor of the 4D spacetime 

manifold, the metric coefficients of the space coordi-

nates can no longer remain Euclidean. The popular no-

tion of ―curvature‖ of space implies the physical de-

formation of the space continuum. However, such 

Riemannian metric induced physical deformation of 

the space continuum, leads to discontinuities and voids 

in the continuum which are physically not valid. 
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Hence, the 4D spacetime manifold cannot be a physical 

entity. 

c) The variable metric of the time coordinate is assumed 

to be a physical effect, depicted through a physical in-

fluence of gravitational field on natural cyclic 

processes used for measurement of time. However, this 

violates the fundamental notion of time, as a relative 

measure of change. 

It may therefore, be concluded that the 4D spacetime 

model of GR has been used as an abstract 4D template ma-

nifold to obtain trajectories of particles as geodesic curves. 

The mystic connotations associated with this spacetime 

model may be attributed to the fallacious notion that depicts 

spacetime as a physical entity, a physical 4D continuum in 

which the universe, embedded in 3D physical space, is as-

sumed to exist at all points on the time axis. As discussed 

above, the 4D spacetime manifold cannot be regarded as a 

physical entity on the grounds of causality violation and the 

curvature induced discontinuities in the space continuum. 

However, the incorporation of an upper speed limit c, in the 

spacetime model of GR, may be regarded as an advance-

ment over the Newtonian model of gravitation. 
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