
Physics Essays  volume 16, number 3, 2003 
 

 375

Calculation of So-Called General Relativistic Phenomena by 
Advancing Newton’s Theory of Gravitation, Maintaining Classical 
Conceptions of Space and Relativity 
Reiner Georg Ziefle

Abstract 
With the example of the motion of Mercury around the Sun it is shown how New-
ton’s theory of gravitation should be advanced by taking into consideration the fi-
nite velocity of gravitational expansion and the present concept of transference of 
forces by particles to be able to calculate so-called general relativistic phenom-
ena such as the additional motion of Mercury’s perihelion, the curvature of a 
light beam at the surface of the Sun, and the phenomena observed at the binary 
pulsar PSR 1913+16, maintaining classical conceptions of a Euclidean space and 
the Galilean principle of relativity. 
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1. INTRODUCTION 
Newton’s theory of gravitation has, in contrast to 

Einstein’s theory of general relativity, the deficiency 
that certain phenomena cannot be predicted by it. An 
example is the problem of the motion of Mercury’s 
perihelion. In the 19th century scientists searched for 
a further planet in our solar system in order to be able 
to correctly explain the motion of Mercury’s perihe-
lion on the basis of Newton’s theory of gravitation. 
But the planet they called Volcano was never found. 
However, Einstein’s theory of general relativity was 
later able to explain this phenomenon as well as oth-
ers. Newton assumed that gravitational force has an 
instantaneous effect, that is, a gravitational expansion 
with infinite speed. Today we know that gravitational 
expansion cannot be infinitely fast. One of the first 
scientists who tried to develop Newton’s theory of 
gravitation further by considering the finite velocity 
of gravitational transference and by assuming that the 
gravitational transference might probably have the 
value of the velocity of light was Paul Gerber, a Ger-
man school teacher, whose publication in the year 
1917 is discussed later.(1) But, as far as I know, there 
does not exist a scientific publication on the attempt 
to develop Newton’s theory of gravitation further by 
considering the present concept of transference of 
forces by particles. In a comprehensive scientific 

view, this is an incomplete and consequently unsatis-
factory matter. 

 
2. ADVANCING NEWTON’S THEORY OF 

GRAVITATION 
To be able to explain the so-called general relativis-

tic phenomena by advancing Newton’s theory of 
gravitation we have to go back to the imagination of 
Newton about space and relativity, the way it used to 
be in the physicists’ imagination until the beginning 
of the 20th century, before Einstein himself devel-
oped his ideas. While Newton’s theory of gravitation 
takes place in a Euclidean space, Einstein’s space is a 
non-Euclidean, or a so-called curved, space. While 
Newton believed in the Galilean principle of relativ-
ity, Einstein established a completely new kind of 
principle — a relativistic one. For a paradigm it is 
shown with the example of the motion of Mercury 
how Newton’s theory of gravitation can be developed 
further if we postulate the following, of which the 
first and second points, to present-day physicists, 
sound, of course, very strange: (1) We live in an 
Euclidean space. (2) The Galilean principle of relativ-
ity is valid. (3) The speed of gravitational extension 
has the same speed as light, i.e., about 299 792.458 
km/s. (4) The gravitational force is transferred by 
particles called gravitons. From this we get the fol-
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lowing derivation: Gravitons, which are emitted by 
matter, respectively a mass, shall move from this mat-
ter in all directions by the speed of light in a Euclid-
ean space. Next we want to go from the assumption 
that Mercury is in a resting position with respect to 
the Sun. In this case a certain number of gravitons 
emitted by the Sun will run across Mercury. The rela-
tive frequency with which the gravitons emitted by 
the Sun meet Mercury depends on the velocity with 
which the gravitons move with respect to Mercury. 

If Mercury did not move, the graviton’s velocity 
with respect to Mercury would have the speed of light 
(c), whose relative value is 1. In this case the relative 
value of the frequency with which the gravitons emit-
ted by the Sun meet Mercury is also 1. If Mercury 
moves around the Sun, which is the case in reality, 
with the velocity v, the velocity of the gravitons emit-
ted by the Sun would run across Mercury with a faster 
velocity than before, so that the relative value of the 
graviton’s velocity with respect to Mercury should be 
greater than 1, which is of course not possible in rela-
tivistic physics. But we have postulated that the Gali-
lean principle of relativity should be valid, so that we 
want to assume, nevertheless, that this is possible. If 
the relative value of the velocity of the gravitons 
emitted by the Sun with respect to Mercury is greater 
than 1, that is to say not c but x (Fig. 1), then the rela-
tive value of the frequency with which the gravitons 
emitted by the Sun meet Mercury increases by the 
factor x. As Mercury moves around the Sun with the 
velocity v, however, the relative value of the velocity 
of the gravitons emitted by Mercury and running 
across the Sun should be greater than c, that is to say 
also x. In this case the relative value of the frequency 
with which the gravitons emitted by Mercury meet 
the Sun also increases by the factor x. The factor x we 
can calculate easily by the Pythagorean theorem, 
which is, in spite of the curved planetary orbit of 
Mercury, sufficiently correct if we regard very small 
distances. We then get the formula for x: 
 

2 2 .x c v= +  
 
To get the formula for relative values we have to di-
vide the absolute values of c (velocity of the gravi-
tons) and v (velocity of Mercury around the Sun) by 
the absolute value of c, so that we get 
 

2 2 2

1 .
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Figure 1. The relative velocity of the emitted gravitons related to 
the Sun and Mercury. 

 
 
The factor x I am going to call the “gravitational 

factor of motion” γ ′ in the following: 
 

2

1 .
v
c

γ � �′ = +� �
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Hereby the frequency of the interaction between the 
gravitons emitted by the Sun and the mass m of Mer-
cury increases by the factor γ ′. Because the relative 
frequency with which the gravitons emitted by Mer-
cury meet the Sun also increases by the factor γ ′, the 
frequency of the interaction between the gravitons 
emitted by Mercury and the mass M of the Sun also 
increases by the factor γ ′. To get the whole factor of 
the increasing of the gravitational interaction between 
the Sun and Mercury, we therefore have to square the 
factor γ ′. By this knowledge, Newton should have 
had to multiply his formula for the force of gravita-
tion by the factor (γ ′)2, and the formula for the force 
of gravitation should have been 
 

2

2

( )
,

GMm
F

r
γ ′

=  

 
where G stands for the Newtonian gravitational con-
stant, M for the mass of the Sun, and m for the mass 
of a planet. This result can be interpreted to mean that 
G is not as constant as Newton thought. Because of 
the differing speed of Earth around the Sun during 
one year of 1 km/s, G should therefore fluctuate 
slightly. In the formula of Newton’s kinetic equation 
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for planets, which is not pointed out here, the factor 
(γ ′)2 would be preserved in the numerator, although 
the mass m of a planet cancels out in the numerator 
and denominator because of the proportionality, re-
spectively equivalence, of inert and heavy mass. 
 
3. CALCULATION OF SO-CALLED GENERAL 

RELATIVISTIC PHENOMENA 
But for our further considerations we don’t even need 

the formula of Newton’s kinetic equation for planets. 
Without this it is possible to derive the difference of 
the motion of Mercury’s perihelion as opposed to 
Newton’s theory of gravitation. As gravitation causes 
an acceleration of masses, the postulated additional 
gravitational effect must cause an additional gravita-
tional acceleration of a mass such as Mercury, de-
pending on the mass’s velocity relative to the Sun. 
The conception of today’s physicists goes from the 
assumption that gravitational acceleration depends on 
the largeness of the masses and the distance between 
the centers of the masses. But what happens if two 
masses, which are attracting each other by gravitational 
force, are increasing or if the distance between two 
masses is decreasing? If we go from imagining that 
gravitational force is transferred by gravitons, an in-
creased mass will emit more gravitons by the factor 
the mass has increased and therefore the frequency of 
the interaction between these emitted gravitons and 
another mass increases by the same factor. If the dis-
tance between two masses decreases by a certain fac-
tor, there are arriving at each mass more gravitons in 
the same time by the square of this factor, so that the 
frequency of the gravitational interaction between the 
emitted gravitons and the masses is also increasing by 
the square of this factor. If these effects cause gravita-
tional acceleration, the additional gravitational effect, 
which I derived above, must also cause gravitational 
acceleration if as pointed out by the movement of 
Mercury around the Sun the frequency of the interac-
tion between the masses and the gravitons emitted by 
the Sun and the planet is increasing by the square of 
the factor γ ′. If an additional acceleration of Mercury 
results, so that the acceleration increases by the factor 
(γ ′)2, the velocity of the planet must also increase by 
the same factor. If the velocity is increasing by the 
factor (γ ′)2, in a certain time a larger angle is also 
traversed by the radius of the elliptical orbit of Mer-
cury by the factor (γ ′)2. Each angular position φ1 
therefore changes by the factor (γ ′)2, so that we get 
for the changed angular position φ2 
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1
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For the difference ∆φ = φ2 – φ1 we get 
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The velocity dependence of each angle of an elliptical 
orbit is given by 
 

min (1 )
( ) ,

1 cos
v e

v
e

φ
φ
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where e is the eccentricity of the elliptical orbit and 
vmin is the velocity at the aphelion position. The ec-
centricity of the elliptical orbit of Mercury is 0.2056 
and the velocity of Mercury at the aphelion position is 
38.86 km/s. The change of angle ∆φ at each angular 
position can be calculated by 
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(1 )
.

(1 cos )
v e

c e
φ φ

φ
× +∆ = ×

× − ×
 

 
To calculate the change in the angular position for the 
whole movement of the planet on its elliptical orbit 
we have to use the median velocity of Mercury 
around the Sun, which is 47.88 km/s.(4) This is related 
to the speed of light by a relative velocity of 1.5971 × 
10–4c, so that we get the square of a “gravitational 
factor of motion” γ ′ 
 

2
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v
c

γ
� �� �� �′ = + = +� �� �� �� �

=

 

 



Calculation of So-Called General Relativistic Phenomena by Advancing Newton’s Theory of Gravitation 
 
 

 378

As the median angular position of an elliptical 
planetary orbit is π, hereby results from the median 
angular position φ1 an altered angular position φ2: 
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For the median difference ∆φ = φ2 – φ1 we get 
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As there results an alteration for each angular position 
along the whole route of Mercury’s path from perihe-
lion to perihelion, that is, 2π, we have to multiply this 
difference by 2π so that we get for the alteration of the 
angular position per revolution around the Sun 
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We get the same result if we partially integrate the 
formula for ∆φ and put in for v the median velocity of 
Mercury (v = 47.88 km/s): 
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If we divide 2π 2 by 2π, we get the median angular 
position π of the elliptical orbit, as mentioned above. 

Contrary to Newton’s theory of gravitation, we get 
an alteration of the angular position of Mercury’s 
perihelion per revolution around the Sun of 5.034 94 × 
10–7 rad, or 2.884 81 × 10–5 degrees. The time Mercury 
needs for one revolution around the Sun is 87.969 
days.(4) This is 4.1521 revolutions around the Sun per 
year (365.256 days:87.969 days). To get the 
conveniently cited alteration of the angular position of 
Mercury’s perihelion in degrees per hundred years we 
have to multiply the alteration of the perihelion position 
per year by 4.1521 × 102: 
 

0.000 028 8481 4.1521 100 0.011978 .φ∆ = °× × = °  
 
Expressed in angular seconds this is 43.12″: 
 

0.011978 60 60 43.12 .φ ′′∆ = °× × =  
 
According to Einstein’s theory of general relativity, 
the additional advance of the perihelion’s position per 
hundred years is, as opposed to Newton’s theory of 
gravitation, 43.03″ angular seconds.(3) The observation 
for the additional forward motion of Mercury’s 
perihelion is about 43.11″ ± 0.45″ per hundred years.(3) 
The same conclusions result by using Newton’s 
formula for the whole energy of an elliptical planetary 
orbit.(2) According to Newton’s mechanics, the whole 
energy of an elliptical planetary orbit is the same as 
that of a circular orbit with the diameter of the major 
axis of the ellipse or with a radius of the semimajor axis 
(a) and is given by the formula 
 

2

.
2 2

mv GMm GMm
E

r a
= − = −  

 
The term (mv2/2) stands for the kinetic energy (Ek) and 
the term (GMm/r) stands for the potential energy of 
gravitation (Eg), which is defined as a negative gravita-
tional potential. On the basis of our considerations we 
have to postulate that the Newtonian gravitational con-
stant depends on the speed of a planet or of any other 
object with a gravitational interaction, respectively, in 
our case, with the speed of Mercury. If by the motion of 
Mercury the Newtonian gravitational constant in-
creased by the factor (γ ′)2, the whole energy of the 
elliptical planetary orbit would decrease by the factor 
(γ ′)2, because of its negative algebraic sign, so that the 
whole energy of an elliptical planetary orbit would be 
smaller by the factor (γ ′)2 than Newton expected. Clas-



Reiner Georg Ziefle 
 

 

 379

sical mechanics predicts that the orbiting velocity of a 
planet is larger if the energy E of an elliptical orbit is 
smaller. This means that, if the whole energy E of the 
elliptical planetary orbit is smaller by a certain factor, 
the angle traversed by the radius in a certain time must 
also be larger by this factor, so that the sidereal revolu-
tion of Mercury around the Sun is finished before the 
perihelion position is reached again, so that the perihe-
lion position must advance by each revolution around 
the Sun. 

If we regard the photons of a light beam as particles 
(as Einstein did himself) with a gravitational interac-
tion, in the case of a light beam striking the surface of 
the Sun, the square of the “gravitational factor of mo-
tion” γ ′ would be 
 

2
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As we postulated that the Newtonian gravitational 
constant depends on the speed of any object with a 
gravitational interaction by the motion of a light beam, 
respectively a photon, the Newtonian gravitational 
constant should also in this case increase by the factor 
(γ ′)2, so that the curvature of a light beam at the sur-
face of the Sun should have double the value as is 
expected by Newton’s mechanics: 
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This is the correct value, as is predicted by Einstein’s 
theory of general relativity.(5) 

By simple considerations other so-called general 
relativistic phenomena can also be calculated. Ac-
cording to Kepler’s second law, in the same time the 
same area of an elliptical planetary orbit is always 
traversed by its radius. This means that the area (∆A) 
traversed by the radius in a certain time and the time 
(∆t) the radius needs to traverse this area are propor-
tional. However, if the velocity increases by the factor 
(γ ′)2 in a certain time, a larger angle is traversed by 
the radius of the elliptical orbit of Mercury, also by 
the factor (γ ′)2. And, if in a certain time a larger angle 
(∆φ) is traversed by the radius by a certain factor, a 
larger part (∆A) of the planetary orbit is traversed by 
the square of this factor, as an area is a square meas-
ure with respect to an angle. According to this, ∆A is 
proportional to ∆φ2, so that we get, for the median 
difference ∆A = ∆A2 – ∆A1, 
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According to Kepler’s second law, ∆A and ∆t are pro-
portional, but if the radius traverses a larger part of 
the area of the planetary orbit in the same time, which 
is larger by ∆A, the time the radius needs to traverse 
this area is shorter by ∆t, so that ∆t must have a nega-
tive algebraic sign. Therefore we get 
 

10.000 000 000 000 006 42139 .t t∆ = − × ∆  
 
According to our considerations, the time that Mer-
cury needs for one revolution around the Sun is less 
than Newton expected by a factor of –6.421 39 ×10–15. 
As Mercury needs 87.969 days (∆t1 = 7 600 521 s) for 
one revolution, Mercury needs about 4.88 × 10–8 s 
less per revolution around the Sun: 
 

10.000 000 000 000 006 42139

0.000 000 000 000 006 42139 7 600 521 s
0.000 000 048 806 s.

t t∆ = − × ∆
= − ×
= −

 

 
According to this, the revolution of Mercury or of 
another planet around the Sun must be faster than 
Newton would have expected and must get slightly 
faster and faster with time, so that the orbit of a planet 
loses energy. 

I revised my predictions for other so-called general 
relativistic phenomena, for example the phenomena 
observed at the binary pulsar PSR 1913+16.(6,7) In this 
case the calculation is a little bit more difficult, as 
there are two stars, a pulsar and its unseen compan-
ion. The pulsar and its companion both follow eccen-
tric elliptical orbits around their common center of 
mass. The eccentricity of the pulsar’s elliptical orbit is 
given by e = 0.617. The minimum separation is called 
periastron and the maximum separation is called apas-
tron. The period of the orbital motion is 7.75 h and 
the stars are nearly equal in mass, about 1.4 solar 
masses (mp = 1.42, mc = 1.41). Therefore in the fol-
lowing we go from the simplifying assumption that 
the parameters of the elliptical orbit of the pulsar are 
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also valid for the orbit of the companion. During the 
movement on their orbits the stars move more slowly 
when they are at the apastron than when they are at 
the periastron. The velocity of the stars varies from a 
minimum of 75 km/s to a maximum of 300 km/s. The 
median velocity of the stars is 187.5 km/s. As the two 
elliptical orbits have an inclination (i) toward each 
other of about 21 angular degrees (cos i = 0.933), the 
median velocity vm with respect to the common center 
of mass is 175 km/s: 
 

187.5 km/s cos

187.5 km/s 0.933
175 km/s.

mv i= ×
= ×
=

 

 
This is 0.000 584c. According to our considerations, 
in this case we expect the square of the gravitational 
factor of motion γ ′ to be 
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The semimajor axis of the elliptical orbit of the pulsar 
is given by a1. For the minimum distance of the pulsar 
on the major axis from its elliptical focus we get 
 

1 1(1 ) 0.383.q a e a= × − = ×  
 
With respect to the plane through the center of mass 
and the two stars we get a minimum distance from the 
center of mass at the periastron of 
 

1 1 1(1 ) cos 0.383 0.933 0.375 .q a e i a a′ = × − × = × × = ×  
 
And for the maximum distance of the pulsar on the 
major axis from its elliptical focus we get 
 

1 1(1 ) 1.617.Q a e a= × + = ×  
 
With respect to the plane through the center of mass 
and the two stars we get a maximum distance from 
the center of mass at the apastron of 
 

1 1 1(1 ) cos 1.617 0.933 1.509 .Q a e i a a′ = × + × = × × = ×  
 
As we can see, the distances are smaller with respect to 
the elliptical orbit, which is projected on the plane 

through the center of mass and the two stars, than the 
analog distances on the major axis. This is the reason 
why we got a slower median velocity of 175 km/s in-
stead of 187.5 km/s as the pulsar or its companion is 
moving around the smaller projected orbit in the same 
time as on the larger elliptical orbit in the plane of the 
major axis. There is an important difference between 
the orbit of Mercury — where the Sun stays at the ellip-
tical focus, so that the gravitational effect of the Sun 
against Mercury is unaltered — and that of the two 
stars, which are moving around their common center 
of mass. The gravitational effect of each star with re-
spect to the common center of mass alters with the dis-
tance of each star from the common center of mass. 
From the data of distances at the apastron and the peri-
astron we can see that the relative gravitational effect, 
which is caused in the common center of mass by each 
star at the periastron, is about 18 times stronger than at 
the apastron, where the relative gravitational effect is 1 
with respect to the gravitational effect at the periastron. 
As the gravitational effect is reciprocal to the square of 
the distance, we get for the relative gravitational effect 
at the periastron compared with the gravitational effect 
at the apastron 
 

2 2 2
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For the median relative gravitational effect caused in 
the center of mass by each star we get 
 

17.83 1
9.415.

2
+ =  

 
This means that the median gravitational effect, 

which is caused by each star in the common center of 
mass, is about 9.415 times stronger than in the case of 
an elliptical orbit, so that the relative gravitational effect 
in the center of mass is unaltered. If the median gravita-
tional effect caused by the companion in the common 
center of mass is about 9.415 times stronger than in the 
case of an elliptical orbit, the gravitational effect is un-
altered in the center of mass, respectively 1. According 
to our considerations above, the angle traversed by the 
radius of the elliptical orbit of the pulsar in a certain 
time must be on average 9.415 times larger, so that the 
effect we derived above must be on average 9.415 
times greater. To get the alteration of the angular posi-
tion of the periastron, we therefore have to multiply the 
effect we derived above for the alteration of Mercury’s 
perihelion position by 9.415, so that we expect 
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Accordingly, the alteration of the angular position of 
the pulsar (and its companion) at the periastron per 
revolution around the common center of mass is about 
6.34 × 10–5 rad, which is about 0.003 63 angular de-
grees. The time the pulsar needs for one revolution 
around the common center of mass is 7.75 h. This 
gives 1131 revolutions per year, so that we get an 
alteration of the pulsar’s position at the periastron per 
year of about 4.1°: 
 

0.003 63° 1131 4.1°.φ∆ = × =  
 
This means that the periastron is advancing about 4 
angular degrees per year, as is also predicted by Ein-
stein’s theory of general relativity. Depending on the 
method, the observed alteration of the periastron’s an-
gular position is 4.0°, respectively 4.22°, per year.(6,7) 
According to our considerations above, this also means 
that the area (∆A1) of the elliptical orbit of the pulsar 
and of its companion, which is traversed by the radius 
in a certain time, is on average larger by the square of 
the factor 9.415 than the complying part of an ellipti-
cal orbit, where the gravitational effect in the center of 
mass would be unaltered, respectively 1, so that we get 
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And, as ∆A and ∆t are proportional, 
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For the relative alteration of the time that the pulsar 
needs for one revolution we get 
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When the position of the periastron is reached de-
pends on the arrival of both stars at their minimum 
separation, so that we have to regard the elliptical 
orbit of the pulsar and its companion, and therefore 
have to double this result, if we want to calculate the 
relative alteration of the arrival of the pulsar and its 
companion at the periastron: 
 

1

1

2 0.000 000 000 001148

0.000 000 000 002 296 .

t t

t

′∆ = − × × ∆
′= − × ∆

 

 
Thus we get a relative alteration of about –2.3 × 10–12. 
Einstein’s theory of general relativity predicts an al-
teration of –2.4 × 10–12, while the observed relative 
alteration of time with respect to the arrival at the 
periastron is (–2.30 ± 0.22) × 10–12 per revolution.(7) 
As the pulsar and its companion need about 7.75 h 
(∆t1′ = 27907 s) per revolution around the common 
center of mass, they therefore need 6.4 × 10–8 s less 
per revolution to reach the position of the periastron: 
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This is about 73 × 10–6 s per year (1131 revolutions). 
According to this, the revolution of the pulsar and its 
companion around the common center of mass is 
faster than Newton would have expected and must get 
faster and faster with time, so that the system is losing 
energy, which is explained by present-day physicists 
by gravitational radiation.(6–8) 

 
4. DISCUSSION 

According to my considerations, the postulated addi-
tional gravitational effect must cause an additional 
gravitational acceleration on a mass such as Mercury, 
depending on the mass’s velocity relative to the Sun. 
The conception of today’s physicists starts from the 
assumption that gravitational acceleration depends on 
the size of the masses and the distance between the 
centers of the masses. If we go from the imagination, 
that gravitational force is transferred by gravitons, an 
increased mass will emit more gravitons by the factor 
the mass has increased and therefore the frequency of 
the interaction between these emitted gravitons and 
another mass increases by the same factor. If the dis-
tance between two masses decreases by a certain fac-
tor, more gravitons are arriving at each mass in the 
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same time by the square of this factor, so that the fre-
quency of the gravitational interaction between these 
emitted gravitons and the masses is also increasing by 
the square of this factor. If these effects cause an ac-
celeration, the additional gravitational effect, which I 
derived above, must also cause an acceleration, if as 
pointed out by the motion of Mercury or another planet 
around the Sun the frequency of the interaction between 
the gravitons emitted by the Sun and the planet and their 
masses increases by the square of the factor γ′. 

As mentioned in the introduction, one of the first 
scientists who tried to develop Newton’s theory of 
gravitation further by considering the finite velocity 
of gravitational transference and by assuming that the 
velocity of the gravitational transference might 
probably have the value of the velocity of light was 
Paul Gerber, a German school teacher.(1) Gerber 
imagined that a mass causes a status of enforcement 
in its surrounding space, which spreads by the veloc-
ity of light. He apprehended that by assuming a finite 
velocity for the gravitational transference the move-
ment of masses should affect the gravitational interac-
tion between masses. He went from the assumption 
that gravitation is the result of a gravitational poten-
tial, which is caused in an attracted mass by the status 
of enforcement spreading from an attracting mass. 
The gravitational potential he defined as the positive 
work that has to be achieved to move an attracted 
mass, which is at a certain distance from an attracting 
mass, in an indefinitely far position from the attract-
ing mass. If the velocity by which this has to be 
achieved is of no relevance, it means that the velocity 
is approximately zero. If an attracting mass, for ex-
ample Mercury, has a certain velocity with respect to 
the attracted mass, for example the Sun, the status of 
enforcement would spread faster from Mercury to-
ward the Sun. However, if Mercury is moving with 
respect to the status of enforcement spreading from 
the Sun in the direction of Mercury by a certain ve-
locity, the status of enforcement and the velocity of 
the mass would pass each other by the sum of their 
velocities. As Mercury moves around the Sun, the 
potential that would be able to be developed in the 
mass of the Sun and the mass of Mercury in the case 
Mercury is in a resting position with respect to the 
Sun therefore would not have the time any more that 
the potential would need to develop a certain value, 
so that the positive gravitational potential should be 
lower than before. This means that by the motion of a 
mass against another mass the gravitational interac-
tion between the masses would decrease. Hereby, 
according to Gerber, the kinetic energy would rela-

tively increase with respect to the decreasing positive 
gravitational potential. Therefore the time Mercury 
needs for one sidereal rotation around the Sun would 
decrease, while the rotation of the radius with a cer-
tain length of Mercury’s elliptical orbit would slow 
down, so that the perihelion would be reached later 
than with respect to the sidereal period of revolution. 
After these considerations, Gerber applied Newton’s 
kinetic equations for planets to this derivation of an 
acceleration of the period of Mercury’s revolution. By 
this he could also calculate the difference of the peri-
helion position of 43 angular seconds per hundred 
years against Newton’s theory of gravitation. 

Gerber starts from the assumption that gravitation is 
the result of a gravitational potential, which is caused 
in an attracted mass by the status of enforcement 
spreading from an attracting mass. This means that 
gravitational energy is spreading from the attracting 
mass out to outer space. If we regard the principle of 
mass-energy conservation, in this case the attracting 
mass should lose energy and therefore mass, so that 
we should be able to observe a decrease of masses 
gradually due to that loss. But as yet no observation 
reports such a decrease of masses. By the movement 
of Mercury around the Sun, according to Gerber, the 
gravitational interaction is decreasing, while, accord-
ing to my conclusions, the gravitational interaction is 
increasing. It’s true that, according to Gerber’s con-
clusions, the kinetic energy is relatively increasing 
with respect to the decreasing positive gravitational 
potential. But let’s again have a look at Newton’s 
formula for the whole energy of a planetary orbit: 
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r a
= − = −  

 
As mentioned above, the term (mv2/2) stands for the 
kinetic energy (Ek) and the term (GMm/r) stands for 
the potential energy of gravitation (Eg), which is here 
defined as a negative gravitational potential. If the 
gravitational interaction, respectively the positive 
gravitational potential, is decreasing, as Gerber pos-
tulated, the negative gravitational potential in the 
formula above is less negative and therefore increas-
ing, so that there would result a higher energy of the 
elliptical orbit of Mercury. According to classical 
mechanics, a higher energy of an elliptical orbit re-
sults in a slower revolution around the Sun. This 
means that in this case we have to postulate a decel-
eration of the period of Mercury’s revolution around 
the Sun and not an acceleration as Gerber thought. 
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In 1999 Paul Marmet(9) published another deriva-
tion of the additional advance of Mercury’s perihe-
lion position, based on the assumption of the princi-
ple of mass-energy conservation: “Classical Descrip-
tion of the Advance of the Perihelion of Mercury.” It 
is useful to cite parts of his publication: “Let us men-
tion first that we believe that the principle of mass-
energy conservation is one of the most important 
fundamental principles in physics. … Energy always 
possesses mass and mass always possesses energy. 
… The logical explanation implies that the atoms 
having extra gravitational energy on Earth … have a 
slightly larger mass than the atoms at a lower poten-
tial energy on Mercury. … The principle of mass-
energy conservation requires that one Mercury-
kilogram (at Mercury-distance from the Sun) contain 
slightly less mass than the Earth-kilogram (at Earth-
distance from the Sun), even if the number of atoms 
is exactly the same (by definition).” In the following 
Marmet points out that, using quantum mechanics, 
clocks on Mercury should function at a different rate 
and that lengths on Mercury and Earth should also be 
different. “Physical lengths can be expressed either 
in Earth-meters or in Mercury-meters. … The same 
orbit of Mercury can also be measured using the 
shorter standard Earth-meter. Then, the number of 
Earth-meters to measure the same physical orbit of 
Mercury is larger when it is measured using the 
shorter Earth-meter. We must notice that Newton’s 
laws of physics deal with the numbers that are fed 
into the equations. Since the number of meters to 
measure the same physical length (using the longer 
Mercury-meters) is smaller than the number of Earth 
meters, we must not be surprised to find different 
physical results when Newton’s laws use the cor-
rect local (proper) number. … [T]he Mercury ob-
server, measuring a smaller number of local meters 
to the Sun (with the longer local meter), will calcu-
late that the velocity of Mercury must be larger 
(than the Earth observer using the Earth-meter). … 
[T]he absolute mass of the Sun does not change 
because it is measured with respect to the moving 
Mercury-kilogram. However, the number of Mer-
cury-kilograms that represents the Sun will be dif-
ferent. … the number of Mercury-kilograms in the 
Sun is larger than the number using Earth-
kilograms. … We know that G is an absolute 
physical constant. However, since the standard 
units existing on Mercury are different from the 
standard units on Earth, different numbers will 
then express the same physical gravitational con-
stant G.” 

By using different numbers for the changed Mer-
cury-units for G, for the mass of the Sun, and for the 
Mercury-meters for the length of the radius of Mer-
cury’s orbit (while the mass of Mercury expressed in 
Mercury-kilograms cancels out in the numerator and 
denominator), Marmet is also able to calculate the 
correct value of the advance of the perihelion of 
Mercury. Because of the local smaller mass-unit of 
Mercury, Marmet uses a larger numerical mass, and, 
because of the larger Mercury-meters of Mercury, he 
uses a smaller numerical length in the formulas for 
Mercury, so that there is a change of Mercury’s orbit 
and also a stronger gravitational attraction between 
Mercury and the Sun. Although Marmet’s model 
suits classical mechanics “locally,” that is to say, by 
his model it is possible to calculate the so-called 
relativistic phenomenon of the additional advancing 
of Mercury’s perihelion by using local values, his 
model doesn’t represent a pure classical physical 
theory, as it uses quantum mechanics to derive local 
values, respectively units. Using values in the classical 
equations, which are with respect to the locality of 
Mercury remote values, for example the values used on 
Earth, by Marmet’s model it is not possible to calculate 
the additional advance of Mercury’s perihelion. 

 
5. CONCLUSIONS 

There exist at least four possible derivations by 
which so-called general relativistic phenomena can be 
calculated, such as the advance of Mercury’s perihe-
lion. As pointed out above, Paul Gerber’s derivation 
contradicts the principle of energy-mass conservation 
and also classical mechanics, while Paul Marmet’s 
model doesn’t represent a pure classical physical the-
ory, as his model uses quantum mechanics to derive 
local values. By Marmet’s model it is only possible to 
calculate the additional advance of Mercury’s perihe-
lion if we use local values in the classical equations. 
However, Einstein’s theory of general relativity needs 
a lot of additional assumptions, which result in a 
completely new physical insight. As shown above, it 
is possible to advance Newton’s theory of gravitation 
only by taking into consideration the finite velocity of 
gravitational expansion and the present concept of 
transference of forces by particles to be able to calcu-
late so-called general relativistic phenomena main-
taining classical conceptions of a Euclidean space and 
the Galilean principle of relativity. By the theory in-
troduced in this article it is possible to predict so-
called general relativistic phenomena without using 
local values or relativistic physics. By our postulation 
that motion causes an additional gravitational effect, 
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we touch on Einstein’s theory of general relativity, as 
Einstein postulated an equivalent effect of mass 
caused by motion. But our conclusions also mean that 
the velocity of gravitational expansion is, with respect 
to different observers, noninvariant or nonconstant. 
This is an antithesis to relativistic physics, but no con-
tradiction to the fact that we on Earth measure a (rela-
tively) constant velocity of light. As there obviously 
exist more than one consistent theory to explain and 
calculate so-called general relativistic phenomena, it 
is to be decided which one complies with reality. For 
this we should consider Ockham’s razor. With respect 
to Ockham’s razor we have to ascertain that there 
cannot be fewer additional assumptions in Newton’s 

theory of gravitation than in our derivation, that is to 
say, gravitational interaction is caused by something, 
as for example gravitons, and the gravitational inter-
action is transferred by a certain finite velocity, as for 
example the velocity of light. Without these two as-
sumptions, Newton’s theory of gravitation is incom-
plete. Another question that arises is this: Is it also 
possible to explain and calculate so-called special 
relativistic phenomena by advancing Newton’s me-
chanics by alternative conceptions about the traveling 
of light? In fact this is also possible! But this is to be 
discussed in another article. 
 
Received 30 May 2003. 

 
Résumé 
En utilisant l’exemple du mouvement de Mercure autour du soleil, la néces-
sité de développer la théorie de la gravitation de Newton est démontrée en pre-
nant en considération la vitesse finie de l’expansion gravitationnelle ainsi que le 
concept actuel de transfert des forces par les particules de manière à permettre le 
calcul des phénomènes dits « de relativité générale », tels que le mouvement 
supplémentaire du périhélie de Mercure, la courbure des rayons lumineux à 
la surface du soleil et les phénomènes observés sur le pulsar binaire PSR 1913+16 
en conservant les concepts classiques de l’espace euclidien et le principe galiléen 
de la relativité. 
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