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S U M M A R Y

 Accepting clock retardation as an empirical fact, we provisionally adopt Whitrow's
derivation of the Robertson-Walker Metric ( ) of Cosmology from the gamma-factor of SR.RWM
Recalling that the principle of cosmic isotropy can be used as an argument for the definability
of an all-embracing universal time, at least statistically, we propose to reverse this procedure
by postulating such time as a regulative idea in the sense of Kant.
 Taking  as our formal point of departure, we then investigate the properties of twoRWM
standard models of modern cosmology: 1) the uniform expansion model of Milne & Prokhovnik,
the simplest model of a cosmic "big bang", and 2) the exponential expansion model of Bondi &
Gold, (supposed to be) the simplest model of a cosmic "steady state". It is then easy to show that
the ideas of "big bang" and "steady state" are not mutually exclusive.
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1. INTRODUCTION

 Taking clock retardation as an empirical fact we provisionally adopt Whitrow's derivation
of the standard Robertson-Walker metric  from the -factor of special relativity  ( ) ( ).RWM SR#
According to Milne & Walker, two kinds of  must be distinguished: ones,observers fundamental 
defining the geometrical structure of the specific cosmological model under consideration by
constituting its substratum, and ones which are superposed on the substratum in aaccidental 
way that refers the description of their motion to the  as a universal "frame of rest". substratum
 The difference, naturally, is statistical and a matter of degree. Thus it is possible to make
sense of a graduation of clocks according to their approximation to the ideal of a universal time:
we classify particles by estimating the departure of their distribution from universal isotropy.
Recalling the fact that the principle of  can be used as an argument for thecosmic isotropy
definability of an all-embracing , at least statistically, we propose to reverse thisuniversal time
procedure by postulating such time as  in the sense of Kant.a regulative idea
 Using  as a formal point of departure we investigate the properties of two standardRWM
models of modern cosmology: ) the uniform expansion model of Milne & Prokhovnik, which!
is the simplest model of a cosmic "big bang", and ) the exponential expansion model of Bondi"
& Gold, supposed to be the simplest model of a cosmic "steady state". Rejecting the so-called
"perfect cosmological principle" of the latter, it is easy to show that the ideas of "big bang" and
"steady state" are not mutually exclusive after all: a universe starting with a "big bang" at the
dawn of creation may very well approximate to a "steady state" in the course of infinite time.
 In agreement with our provisional analysis of  we consider the relationship betweenRWM
our choice of time scale for a certain model of the universe and its corresponding space metric.
As it turns out, there are at least two important ways of mapping the expansion of the universe:
+ ,) that which keeps atomic sizes constant while light is being stretched, and ) that which keeps
distances between fundamental observers constant while their atoms are shrinking.
 Finally a new "steady state" model of the universe is proposed which deviates from RWM
by allowing atoms to be contracted due to universal dispersion. In this model, spatial curvature
is apparently increasing with the distance at which an object is seen by a fundamental observer.
The model implies  and  to be identical as regards their formal structure.world map world view
Being derived directly from , it is even simpler than the Bondi-Gold model.. œ .> .=7# # #

 The basic properties of this model and related ones are examined and discussed.
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2. A CLASSICAL ALTERNATIVE TO SR

 The hyperbolic formulae corresponding to the standard addition  are:! ! =w ´ 

-9=2 œ -9=2 -9=2  =382 =382! ! = ! =w

=382 œ =382 -9=2  -9=2 =382! ! = ! =w

 With , , the  are expressible in temporal coordinates:- ´ ?83>C @ ´ >+829 = LT
> œ > -9=2  B =382 B œ B -9=2  > =382w w= = = =  .  

It is interesting that the are derivable from the addition formulae if and only if in:LT 7 7´ w

> Î ´ -9=2 >Î ´ -9=2 B Î ´ =382 BÎ ´ =382w w w w w w7 7 7 7! ! ! !  .    .    .  
It is natural to identify  with the  invariant:   .7 g# # # # # # w# w# w# w#SR ´ > B C D œ > B C D

 The standard (1 3)  for three inertial frames, , & , in relative motion are:x LT O W Ww

       .(1 )+ \ ´ B -9=2  > =382 œ B -9=2  > =382 ] ´ C ´ C! ! ! !w w w w w

       .(1 ), X ´ > -9=2  B =382 œ > -9=2  B =382 ^ ´ D ´ D! ! ! !w w w w w

 origoConsider  to be a preferred frame with the privileged observer  situated in its .O S
Let the observers &  be situated in the  of & , resp., and let the frame times & S S W W > >w w worigos
of &  be synchronized to the proper time  of  by choosing  when W W X X S Sw S ´ > ´ > ´ !w w&
both coincide with . Suppose that an event  occurs at particle , as observed by , .S SI T S S& w

Let the standard coordinates of  be  in ,  in  and  in I Ð Ð >ß Bß Cß DÑ W Ð > ß B ß C ß D Ñ WX ß\ß ] ß ^Ñ O w w w w w

Then, by eliminating the irrelevant frame times  from the expressions for , we get:> X& &> \w

\ œ BÎ-9=2  X >+82 œ B Î-9=2  X >+82! ! ! !w w w

Further, using  to eliminate  or , we recover  for the privileged time := ! ! = ! !œ  œ  Xw w w  LT
      –(2 )+ B œ ÖB -9=2Ð Ñ  X =382 ×Î-9=2w = ! = !

    –(2 ), B œ ÖB -9=2Ð Ñ  X =382 ×Î-9=2w w w w w= ! = !

Finally, introducing non-standard frame-times  &  for frames &  defined by means of :- -7 7 w wW W

 (3)         - -X ´ 7 7# #´ w w

# ! # !´ -9=2 ´ "Î ß ´ -9=2 ´ "ÎÈ È"@ "@# w#w w

and using , we find the Tangherlini transformations  as generalized by Selleri:A ´ >+82= ( )TT
    (4 ) -+ B œ B  =382 œw -9=2Ð Ñ B Ð"A@ÑA

-9=2 "A

= !
!
– 7 = 7-È #

    (4 )  -, B œ B  =382 œw w w-9=2Ð Ñ B Ð"A @ ÑA
-9=2 "A

= !
!

w w w w w w w

w w#

– 7 = 7-È
 In standard , it is always the proper time of a single moving clock which is said to be SR
retarded relative to the slave clocks distributed as a network over the rest frame of the observer;
but if we refer the inertial motion of particles to a privileged frame we should use  instead.TT
Notice that  reduce to  if all observations are referred to the frame of the :TT GT midway particle
    (5) -! =œ Ê B B œ =382 œ #X =382= =

# #
w 7

Applying directly to , we get the same result, viz. :- -> ´  B >+82 > ´ B >+827 7= =
# #

w w,  w w LT GT
 (6)  - - -7 7 = = 7 =w w w w wœ ß œ  ß B œ B  =382 ß C œ C ß D œ D
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3. THE ROBERTSON-WALKER METRIC

 In his monumental  (1961/1980), G.J. Whitrow sketched a Natural Philosophy of Time
method to derive the  of relativistic standard cosmology from the -factor of . Let:RWM SR#

- ´ " Þ - > ´ < ´ "9 9 9 9

and let the  of the comoving standard rest frame  of an observer  be  himself.origo W T T
 Now suppose an event , taking place at some object , to be triggered by a light signalI S
which instantaneously released a visible flash. Suppose further that this light signal was sent off
by  at the instant , and that the flash was perceived by  at the instant , both &  beingT T7 7 7 7" $ " $

instants of proper time  of  as read off his own standard atomic clock . We then recover the7 T G
Einstein coordinates of the Cartesian frame  of  by means of the usual definitions:W T

7 7$
w w w
$´ >< ´ > <  .  

7 7"
w w w
"´ >< ´ > <  .  

From the standard  invariant  we get the -factor for the retardation of moving clocks: SR . .7 7 #$ "

. ´ . . œ .> .< ´ .>g 7 7 ## # # # #
$ "

 Whitrow now suggested the substitution: .  With this move,  is no longer.< Ä ÐXÑ . Xf 5
the  , but more like the   of all fundamental observers,private frame time public proper time> 7
i.e. all observers at rest in the universe, e.g. relative to the cosmic background radiation .( )CBR
Putting , this transforms the standard invariant of  into the standard metric:X ´ 7 SR RWM 

. œ .>  .< œ .  Ð Ñ .g 7 7 5# # # # # #f

 f is the expansion or scale factor for the universe, and  a fixed "comoving" coordinate.5
Now, for , , i.e. , showing that all fundamental observersfundamental observers . œ ! . œ .5 g 7
participate in the same common  . By implication, any devitation of  proper time cosmic time g 7
from  is restricted to non-fundamental or  distinguished by a variable .g 5accidental observers
Considering , one can ask if all this amounts to more than mere analogy.g 7Á Á >
 According to the standard view, it is always the  of a "moving" particle whichproper time
is claimed to be "slow" relative to the  of a "stationary" observer. So coordinate time,frame time
or frame time, is thereby tacitly assumed to represent the "true extended time" of any observer.
The cosmic time  implied by  is seldom taken seriously, but mostly ignored or explainedg RWM
away as being of "statistical origin" and thus "ill defined". Nevertheless, it is the firm stance of
the present writer that a fundamental importance should be ascribed to the cosmic time .g
 If we define  by the readings of the master clocks of our fundamental observerstrue time
when they have been properly synchronized - e.g. by letting a definite non-local cosmic event
such as the beginning of everything in a socalled "big bang" represent a common time zero -
then it is no longer true to say that the master clock of a fundamental observer is slow relative to
the frame clocks of another observer, fundamental or not. Much rather it is true to say that it is
the clocks of accidental particles that are slow relative to the clocks of fundamental observers.
Everything depends on convention in the sense that it follows from a preferred point of view.
 Please, notice that this does not involve us in any conflict with the results of experiment.
The only conflict at stake is one relating to the standard interpretation of .SR
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 Hence, if the clocks of fundamental observers show the true time , then the clock of ang
accidental particle will be more or less astray. In fact, the greater its distance to that fundamental
particle relative to which it is momentarily at rest, and which thus constitutes the natural origo
of its own rest frame, the slower its clock will run and the more it will deviate from true time.
The natural way of interpreting this retardation of moving clocks is as an effect of gravitation.
In this way we have found a natural coupling between the rates of non-fundamental clocks and
what seems to be a gravitational potential due to the substratum of fundamental particles.
 The reason for this dependence is that the deviation of the clock of an accidental particle
from true time  is found by direct comparison with the clock of that fundamental particle withg
which it momentarily coincides; and the greater the distance of an accidental particle is to the
origo of that rest frame to which it belongs, the faster its speed relative to that fundamental
particle with which it coincides will appear; this follows from the expansion function .f 7Ð Ñ
What we have disclosed is the possibility of an influence of the substratum on particles which
do not belong to the substratum and which represent deviations from cosmic symmetry.
 This supports a conjecture of Whitrow's former master, E.A. Milne. The essential point of
his , devised as an alternative to Einstein's theories,  & , is preciselyKinematic Relativity SR GR
that what we call gravitational effects may emerge from local deviations from cosmic symmetry.
Indeed, if elevated to a universal principle, Milne's conjecture amounts to nothing less than an
inversion of Mach's principle: where Mach claimed that inertia should be reduced to gravitation,
Milne instead held that gravitation should be reduced to inertia - and demonstrated how to do it!
But all this is a repetition of ideas presented earlier. With polar coordinates the  becomes:RWM
 (7)  { }. œ .  Ð Ñ .  Ð. =38 . Ñg 7 7 3 - ) ) 9# # # # # # # #f

 (8) T dTe 7 3 7 7 V 7 7´ Ð Ñ ß ´ . Î Ð Ñ  -98=>Þ ß Ð Ñ ´ Î. ´ "Î Ð Ñf f f' T

  is proper distance,   is an inverse scale function, and  is an auxiliary time parameter.e V T

. ´ . Î " œ

. É œ !

. +<-=38 É œ "

. +<=382 É œ "

3 - ,-

- ,

- ,

- ,

È #

. œ .  Ð ÑÖ.  Ð. =38 . Ñ×g 7 7 3 3 ) ) 9# # # # # # # #
,=! f

. œ .  Ð ÑÖ.  =38 Ð. =38 . Ñ×g 7 7 3 3 ) ) 9# # # # # # # #
,=" f

. œ .  Ð ÑÖ.  =382 Ð. =38 . Ñ×g 7 7 3 3 ) ) 9# # # # # # # #
,="

f

. ´ . Î " ´ . ÎÐ" Î%Ñ œ

. É œ !

. +<->+8Ð Î#Ñ É œ "

. +<>+82Ð Î#Ñ É œ "

3 - ,- 4 ,4

4 ,

4 ,

4 ,

È # #

   

.  Ð. =38 . Ñ ´ ´3 - ) ) 9# # # # # .  Ð. =38 . Ñ
" "

. . .4 4 ) ) 9
,4 ,4

0 ( '# # # # #

# #

# # #

Î% Î%

 The following versions comprise all possible values of the constant of curvature, :,
 (9 ) { }+ . œ .  Ð Ñ . ÎÐ" Ñ  Ð. =38 . Ñg 7 7 - ,- - ) ) 9# # # # # # # # #f

 (9 ) , œ .  Ð ÑÖ.  Ð. =38 . Ñ×ÎÐ" Ñ7 7 4 4 ) ) 9 ,# # # # # # #
%f 4#

 (9 )  d- œ Ð ÑÒ  Ö. . . ×ÎÐ" ÑÓV 0 ( ' ,# # # # #
%T T 4#

 In the T-scale, the expansion of cosmos is explained by a shrinking of its atoms!
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4.  MILNE'S SIMPLE BIG BANG MODEL

 In what follows we throw light on the  by discussing some simple world models.RWM
One of the simplest is Milne's model of uniform expansion, adopted by Prokhovnik and others: %

 (10)   dfÐ Ñ ´ ´ . Î ´ / ´ Ð Ñ7 7 7 VT TÐ ÑÎ "T7 79 9

 Let us assume that radar signals are being exchanged between a pair of observers, & ,T U
in x  . Suppose that a "photon"  is emitted from  at , reflected by  atÐ" "Ñ T œ Utime-space 9 7 7"

:

7 7 7 7œ T œ# $
; :, and received by  at . Then, according to the relativity principle as interpreted

by Milne,  is the same function of  as  is of  - call it . Generalizing, and7 7 7 7 7 7$ # # "
: ; ; : =Ð Ñ ´ /5

introducing Einsteinian standard coordinates &  for  (priming those of ), we at once get:> < T U

> ´ Ð Ñ Ì < ´ Ð Ñ" "
# #7 7 7 7$ " $ " 

7 7 7 7$ "œ / œ >  < œ / œ >  <5 5  .  -

 (11)    .> œ -9=2 < œ =3827 5 7 5

 Let us next assume that  is not a constant, but a variable; then, by differentiation:5

.> œ . -9=2  . =3827 5 7 5 5

.< œ . =382  . -9=27 5 7 5 5

. ´ .>  .< œ .  . œ / Ð  . Ñg 7 7 5 5# # # # # # #Ð ÑÎ #T7 79 9 dT

This invariant is easily expanded into a hyperbolic  of x  dimensions if we put:time-space Ð" $Ñ

. ´ .  =382 Ð. =38 . Ñ ´ Ö. . . ×ÎÐ" Ñ5 3 3 ) ) 9 0 ( '# # # # # # # # #
%
4#

 The standard  invariant is thus transmuted into the hyperbolic metric of an expandingSR
universe with expansion function , which can be transformed into another hyperbolicfÐ Ñ ´7 7
metric, viz. that of a stationary universe whose atoms all contract in accordance with the Hubble
function , where {1 },  being a constant of calibration:V 7 7 7 7" Ð ÑÎ

9 9 9Ð Ñ ´ / œ  691Ð Î ÑT TT7 79 9

 (12 )   + . œ .>  .<  < Ð. =38 . Ñg ) ) 9# # # # # # #

 (12 )   , œ .  Ö. =382 Ð. =38 . Ñ×7 7 3 3 ) ) 9# # # # # # #

 (12 )   dT- œ / Ò  Ö. . . ×ÎÐ" ÑÓ
79 ´ "

#Ð "Ñ # # # #
%

T 0 ( ' 4#

 The st of these metrics, incorporating the universal constancy of the velocity of light,1
yields an infinity of , comprising the flat 3-spaces of fundamental observers.private time-spaces
The following two metrics both yield , each containing a curved 3-space:a public time-space
that of the nd metric being associated with - , relative to which atoms keep a constant size2 7 time
while the distances between fundamental observers steadily expand in proportion to f 7´
(with the consequence that , as suggested by Prokhovnik), and that of the rdlight is stretched 3
metric being associated with t- , relative to which distances between fundamental observerstime
remain invariant whereas the sizes of their atomic constituents are contracting in proportion to
V" "œ /

79="
T , due to  of the velocity of light, as explained by Whitrow.a secular reduction
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5.  THE FIRST STEADY STATE MODEL

 Passing from Milne's world model to that of Gold & Bondi - and of Hoyle - the expansion
function  is changed from  to , to which all "steady state" models must approximate. So:f 7 7Ð Ñ /7

 (13)   dfÐ Ñ ´ / ´ . Î ´ ´ Ð Ñ7 7 V7 T T"
"

"
T

  is a candidate to the proper distance between fundamental particles,e 3´ / ´ >+82 <7

just as  is a plausible relationship of frame time  to proper time ./ ´ "Î >>7 È" œ -9=2 <e# 7
Hence, if Bondi & Gold, and Hoyle, want to retain  as a fundamental invariant of.  / .7 3# # #7

their model, in face of the definitions  & , they have to accept:/ ´ -9=2< / ´ >+82<>7 73

 (14)  . œ .> >+82< .< Ì / . œ .< >+82< .>7 37

. ´ œ .  / . œg 7 3# # # #.> .<
-9=2 < Ð" Ñ

.# #

# #

# #
7 3dT

T

 Generalizing these to (1 3) dimensional time-space we find the following three metrics,x
of which the first one is closest to represent the private 3-spaces of the standard frames of , SR
whereas the second comprises the public flat 3-space of a universe expanding with fÐ Ñ œ /7 7

and the third encompasses the public flat 3-space of atoms shrinking in step with :VÐ Ñ œ "T T

 (15 )  + . œ Ò .>  Ö.<  =382 <Ð. =38 . Ñ×Óg ) ) 9# # # # # # # "
-9=2 <#

 (15 )   , œ .  / Ö.  Ð. =38 . Ñ× œ7 3 3 ) ) 9# # # # # # #7

 (15 )   dT- œ Ò  Ö.  Ð. =38 . Ñ×Ó# # # # # #
Ð" Ñ3 3 ) ) 9 1

T #

  does not compete well with the. œ Ò .>  Ö.<  =382 <Ð. =38 . Ñ×ÓÎ-9=2 <g ) ) 9# # # # # # # #

standard invariant of  which is the much simpler one  .SR . œ .> .<  < Ð. =38 . Ñg ) ) 9# # # # # # #

This rather serious problem is caused by the external factor  which is much less akin to-9=2 <#

the  of  than to the Voigt transformations of some competing ether theory.LT SR VT( ) 
 Maybe, when evidence accumulates, we shall have to recur to the ether hypothesis again.
However, since neither  nor  have yet been finally disproved, and since the "steady state"LT SR
assumption does not necessarily exclude the conjecture that the universe is of finite age and
originated in a "big bang", it is worth while to search for alternative "steady state" models that
are not at variance with . As a step on the way I shall propose the model below. œ .>  .<g # # #

which follows from the first line by means of the definitions stated first in this section:

 (16 )  + . œ .>  Ö.<  =382 <Ð. =38 . Ñ×g ) ) 9# # # # # # #

 (16 )  , œ Ò .  / Ö.  Ð. =38 . Ñ×Ó7 3 3 ) ) 9# # # # # # # "
" /

7
3# #7

 (16 )  dT- œ Ò  Ö.  Ð. =38 . Ñ×Ó" "
" Ñ  " Ñ

# # # # # #
( 1 /(T T# # #3 3 ) ) 9 3

 This, at the very least, is compatible with the standard invariant  of .. œ .> .<g # # #  SR
However, when interpreted by means of , , the model seems flawed:/ ´ -9=2 < / ´ >+82 <>7 73
7 7 is not a genuine cosmic time, since the external contraction factor  also applies to "

" /# #73 . Þ

 This clearly shows that the model does not conform to the standard .RWM
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6. A NEW STEADY STATE MODEL

 Let us start from scratch by adopting  of . However, as we need not. œ .> .<g # # # SR
accept that standard frames are flat, we are free to assume that the world is better described,
when referring to frame time , by taking the geometry of frames, or 3-spaces, to be hyperbolic:>

 (17)      ( st metric). ´ .>  Ö.<  =382 < Ð. =38 . Ñ×g ) ) 9# # # # # # # 1

Now the shortcoming alluded to in §5 can be remedied by adopting the following definitions:
 (18)   3 ´ =382 < / ´ >+82 < / ´ # >+82 / ´ Ò#Ó />   <

#
t 7 7V

Please, notice that we are free to choose  or V ´ V ´ #>+82 Ä " >+82 Ä #< <
# #

 From the above definitions we immediately derive the following relationships:
(19) t/ . œ .< -9=2 <  .> =382< œ Ð.<  . >+82<Ñ -9=2 < œ .<  . =382 <> "3 7–

From these we further obtain dt ; then,. œ .>  .< >+82 œ Ð">+82 <Ñ  .< >+82 < >+827 < <
# #

#

for 0 ( ) we get , , whence:. œ @ ´ .<Î.> ´ >+82< A ´ .<Î. ´ =382<3 7fundamental observers
 (20)  . œ .>  .< œ .>Î-9=2 < œ .>Î7 #" ">+82 <

>+82 < <
È #

Applying  to our st metric, we obtain the steady-state like metric:3 ´ =382 < / ´ >+82 < /> t 1
 (21)  dt   ( nd metric). œ Ò  / Ö.  Ð. =38 . Ñ×Óg 3 3 ) ) 9# # # # # # # # "

" /
t

# #t3 2

Applying dt  to the nd, we get a metric for a static universe of shrinking atoms:/ ´ Î. ´t
TT "

" 2

 (22)   dT   ( rd metric). œ Ò  Ö.  Ð. =38 . Ñ×Óg 3 3 ) ) 9# # # # # # # "
" Ñ ( T # #3 3

 The -like metric ..  is thus changed into two other metrics:SR . œ .> .<  =382 <Ð Ñg # # # #

the nd depicting a universe in exponential expansion, and the 3rd depicting the same universe2
as stationary, but with shrinking atoms; however, none of these metrics is conformal to .RWM
Applying  to our nd metric, we derive this non- :/ œ ">+82 œ " /7 7 # # #< "

# %
t 3 2 RWM

(23) ( th m). œ Ò. Ö" /  / ×  / Ö.  Ð. =38 . Ñ×Óg 7 3 3 3 3 ) ) 9# # # # # # # # # # # #" " "
% # .

.

Ð" / Ñ
7 7 73

7 3"
%

# # #7 4

 This metric holds for fundamental particles only. Noticing that eq. (23), for ,. œ . œ !) 9
is reducible to the identity , both in the case of , or , following a single. œ . . œ ! .V º Vg 7 3
fundamental particle on its course outwards in the line of sight, and in the case of ,. œ  .3 3 7
or , following a series of fundamental particles passing an imaginary border ,.V œ ! V œ const.
we have tested our basic assumption, viz. that the master clocks of fundamental particles always
keep the same cosmic rhythm,  Postulating  in general, eq. (23) becomes:. œ . œ .g g 7invar.

(24)    1 œ ÒÖ" /  / ×  / ÖÐ Ñ  ÐÐ Ñ =38 Ð Ñ Ñ×Ó" " . "
% # . . . .

# # # # # # # # # #. . .
Ð" / Ñ

7 7 73 3
7 7 7 7

) 9
3

3 3 3 ) "
%

# # #7

which is clearly the equation, expressed with , , , , for an invariant .7 3 ) 9 cosmic hyperbola
 So  is a genuine , although eq. (23) does not conform to the standard .7  cosmic time RWM
In line with Selleri [1997f.], we finally suggest that the proper transformations to be used locally
for the inertial motion of an accidental particle relative to a fundamental observer are:
 (25)  . .- - - -< œ Ð<  @ Ñ œ œ œ < œ Ð< @ Ñw w w w w w w# 7 g 7 7 # 7 # # 7
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7. CONCLUSION

 Any world model with an  type of metric can be described in three different ways:RWM
The st description is based on the idea that the average light speed is a universal constant.1
We claim the metric common to all observers, fundamental or accidental, to be reducible to:

. œ .>  .< . œ . œ !g ) 9# # #  for  
However, this is not the case for that of the first "steady state" model; its metric is not like. SR-
The safest way to ensure that the claim is fulfilled is, of course, to start with the  metric.SR
 As pointed out, this timespace is  as a consequence of the retardation of clocks andprivate
the contraction of rods or - with a single expression - the relativization of our metrical units.
 The -like metric in itself says nothing about cosmic expansion or atomic contraction.SR
In spite of Whitrow's claim to have derived  from the relativistic -factor which bears anRWM #
affinity to an -like metric, it is hard to see more than a mere analogy between these two:SR
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 Further, if the former applies to accidental and fundamental observers without distinction
while the latter represents the structure of an expanding substratum of fundamental observers,
we shall obviously need some rules of interpretation which can take us from the former to the
latter by explicitly narrowing the perspective, thus giving privilege to fundamental observers.
Our presentation of the "big bang" model of Milne & Prokhovnik, of the "steady state" model of
Bondi & Gold, and of our own alternative to the latter, offers precisely such rules.
 The nd and rd ways of description treat the universe as a spatial totality unfolding in a2 3
common world time, thereby invoking the idea of  :public timespace
+) According to the nd way, the spatial extension of the substratum is assumed to expand2
relative to the extension of its material content which is determined by the structure of its atoms,
i.e., distances between fundamental observers are increasing relative to their internal structure.
So the proper distance between two fundamental observers is given by , where  ise g 5´ Ð Ñf f
the scale function,  is cosmic time, and  is a fixed coordinate of a fundamental observer.g 5
,) According to the rd way, the spatial extension of the substratum is taken to be stationary3
whereas the dimensions of its contents contract secularly in pace with the reduction of atoms,
i.e., the inner structure of fundamental observers is shrinking relative to their proper distances.
This shrinking takes place in step with T  where  is a contraction function, the inverse ofV V"Ð Ñ
the expansion function , T being an auxiliary time scale defined by: f 7 7T ´ . Î Ð Ñ  -98=>Þ' f
 But common to all possible descriptions is that our invariant of  becomes.g time-space
the universal element of a  , as suggested by my mentor André Mercier.cosmic super-time
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