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Abstract 
In this paper it is described how the Ampere Force Law can be applied to Ampere´s Bridge. 

A detailed derivation based upon a paper by Wesley is being done. 

The results are questioned by Jonson, who promotes a usage of Coulomb’s law. 

However, both proposals can account for forces of the order measured by Pappas and 

Moyssides in the early 1980s. It is up to the reader to choose model.  

Finally, the law usually being used in order to predict forces between electric currents, the so-

called Lorentz force, fails completely to predict the properties of the force. 

This paper is mainly based upon a 20 years old paper by the author of this paper.  
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1. Motives for analysing electric circuits again. 
It has widely been believed that basic electricity and magnetism was dealt with and finished 

until the end of the 19
th
 century, though completed using the Special relativity Theory in the 

beginning of the 20
th
. 

It is also widely believed that all the ‘great masters’ of electricity, as Coulomb, Ampère, 

Maxwell, Lorentz, Einstein et al all agree about basic matters. The new generations only add 

some features though defending principally the old theories. 

However, it can easily be remarked that Ampère very early is presenting experimental results 

which are deeply inconsistent with the theories of Maxwell and Lorentz. 

For example, Ampère describes [12], [23] how a metallic ‘boat’ is floating along the current 

in a mercury trough The Lorentz force, based upon Biot-savart’s law does not explain that 

movement. In this paper further evidence is given that the Lorentz force is unable to give 

credit to ‘parallel forces’ between currents. 

Wesley principally succeeds in using Ampère’s law in this respect, whereas Jonson does the 

same using Coulomb’s law. 

Hence, it seems to be an important actual task to begin analysing electric circuits and the laws 

explaining their behaviour. Back to the 19
th
 century again!
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2. Methodology 
In order to attain an expression for the force between the two parts of Ampère’s Bridge it 

is necessary to divide the work into several steps. Since the shape of the circuit is 

rectangular it is convenient to integrate the contribution to the total force between each 

linear part of the first part and the second part. This work has already been done in 

preceding papers [1], [6], [11] but the steps have not been accounted for individually. Due 

to the tedious work needed in order to replicate all the integrals, the detailed computations 

will hereby be presented, including all the steps. It is more fair play between scientists if 

making it easy for the reader to judge the claims with the aid of easily verifiable 

expressions. 

Below both the theory given by Wesley [1], based upon Ampère’s Law [12] and the 

theory given by Jonson [6], based upon Coulomb’s Law, will be used in order to attain an 

expression for the force between the two parts of Ampère’s Bridge. 

 

2.1. Wesley’s method. 
Wesley [1] basically uses Ampère’s law in his analysis of a set of Ampère’bridge.. 

It may also be mentioned that Jonson has been consulting Wesley himself in order to 

check that the integrals were performed in accordance with the method used by Wesley 

Regrettably, Wesley is not more among us. However, the paper by Wesley appeared to be 

very usable in order to define the integrals to be done. 

2.1.1 Ampère’s Bridge according to Wesley. Configuration being analysed. 
The numbering of the branches of the bridge obeys the paper by Wesley [1], [20]. 

If going counterclockwise, the order by Wesley is 1,2,5,6,7,10 whereas Jonson uses the 

order 1,2,3,4,5,6 [9]. 

2.2. Jonson’s method 
Jonson [6] basically performs the integrals using the same mathematical definitions as 

Wesley. This is possible, since the integrations to be performed are straightforward 

integrals using Cartesian coordinates. Parts of the Wesley results can also be used in the 

integration work, since Jonson’s theory uses the same term as one of Wesley’s. This also 

indicates that there are many common features in the results of Wesley and Jonson. 

Otherwise it is unlikely that both the theories would have been able to predict 

measurement results with a reasonable accuracy. 
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3. The Check of the Wesley result for the force within Ampére’s Bridge. 

3.1. Definition of variables that appear in the expressions for the force upon Ampère’s 

Bridge. 

Since the approach by Wesley […] has appeared to be very usable in order to compute the 

contributions to the total Ampère force from each element of the circuit, it seems convenient 

to use the definitions of variables he gives in his article. But in the further analysis it has 

appeared necessary to add other completing, mainly geometric (Cartesian) variables. 

Wesley gives two fundamental expressions for the computation of the force, one using line 

integrals, the other using volume integrals. The choice of form depends of whether the 

distances between the two parts of the circuit are close to each other or distant. In the first 

case the line approximation is inappropriate; in the other it is usable. 

The expressions, referred to as ‘Ampere’s original differential force law’ [1b] are as follows: 
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It has to be remarked that Wesley prefers to use the coupling constant one instead of 
π
µ
4

0  

which is customary. That causes some work at the very end when comparing the theoretical 

resultsdue to the formula and the measurement results, but that works, too, of course.  

The first term will hereafter be referred to as the ‘a term’ and the second term the ‘b term’. 

To be noted is also that since the same current goes through the whole circuit (excluding the 

current source), 21 II =  and 21 JJ
vv

= , simpler written 21 JJ =  (3) 

Further on, since the whole circuit is supposed to lie in one and the same geometrical plane, 

coordinates may be chosen so that z=0   (4) 

Actual coordinates of parts of bridge being analysed will directly be picked from the figure in 

respective case without further reasoning, as is for example being done below in section 3.1.1 

when inserting M as y variable. 

Since in all cases the y component of the force is being analysed, for simplicity all the 

results due to Eq. (1) and (2) treated below will mean the y component. 

Thus, instead of always writing ........2 =• yuFd
vv

it will simpler be written ........2 =Fd
v
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Figure 1: Ampère’s Bridge [1], [20] (Wesley) , [9] (Jonson) 

 

As can be inferred from the figure, the integrals involving the branches 2-5 and 10-7 

respectively demand usage of Eq. (1) while all the other combinations demand Eq. (2). 

Please observe that the current source in the middle of branch 1 is denoted by the abbreviation 

‘CS’. 

In previous papers [6], [11] it has just been referred to the integrals that they have been 

performed. So did also Wesley [1]. In the following sections these will be demonstrated. 

3.1.1. Integral from branch 1 to 6(excluding the effect due to the current source in 

branch 1 see chapter 5.3.1)) 
In this case  
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Performing the integration 1x  goes from 0 to L and 2x  too, goes from 0 to L. 

 

3.1.1.1. The Second Ampere Law Term from Branch 1 to 6 

Applying integral (2b)  
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In order to solve the integration, the formula  
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has to be applied, preferably by first integrating one step and rearranging the terms: 
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u   (11) 

 

Defining ))(( 22
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Having a term 2

5
−
f , it seems reasonable to search for a primitive function 2

3
−
f , which after 

differentiation with respect to 1x  (the order of integration arbitrarily chosen) gives  
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which appears to be equivalent to a dominant factor of the integrand. 

The remaining factor is )( 12 xx −−   (16) 

Letting the term 
5
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in the formula (10) 
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The integral (9) may now be identified with respective parts of Equation (11). 

Hence, 
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The two right hand terms must be solved separately.  

The second integral may be treated first due to its more simple form. This is preferably done 

by making the variable substitution ϕtan12 Mxx =−  (20) , which in turn implies that 

ϕ
ϕ
21

cos

Md
dx =−  (21) 
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The boarders are transformed as 
M

x
xMx 21

21 tan,tan0 −==⇒= ϕϕ and 

M
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=⇒−=⇒= − 21
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 Integrating first the right term with respect to 1x  gives 
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the expression (23) above simplifies into 
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This expression can easily be integrated, since the numerator is equal to the inner differential 

of the denominator with respect to the 2x  dependent term in both cases. Hence, (26) 

simplifies to )))(((
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The first integral will now be treated: 
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The primitive functions are easily attainable and, hence, (29) develops to 
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Now , by adding the first integral to the second, Eq.(18) can be finally simplified to 
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3.1.1.2. The First Ampere Law Term from Branch 1 to 6 



9(47) 

 

Applying integral (2a) gives ∫ ∫
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Following the example of Eq.(19) above, the result may straightforwardly be written 
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3.1.1.3. Both Ampere Law Term from Branch 1 to 6 
By summing the now the two contributions above, Eq.(32) and (34) respectively, one attains 

the total Ampère force  from branch 1 to 6 (excluding the effects due to the current source) 
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3.1.2. Integral from branch 2 to 7 
In this case  
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Performing the integration, 1y  goes from 0 to N and 2y   goes from N to M. 

 

3.1.2.1. The Second Ampere Law Term from Branch 2 to 7 
Applying integral (2b) 

gives 
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In order to solve the integration, the formula  
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has to be applied, preferably by first integrating one step and rearranging the terms: 
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which appears to be equivalent to an immense factor of the integrand. 

The remaining factor is )( 12 yy −−   (45) 
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The two right hand terms must be solved separately.  

The second term may first be integrated one step with respect to 1y . Thereafter it remains only 

integrating one step more for both terms. 

Having a term 2

3
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f , it seems reasonable to search for a primitive function 2
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differentiation with respect to 1y  (the order of integration arbitrarily chosen) gives  
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Now it is possible to further simplify Eq. (47) by inserting the result (51). 

 

)
22

12

2/322
12

2
12(( )

)(

1
))/(()((

0

2

2

1

2 Lyy
Lyyyy

N

y

M

Ny

dyI

+−
−+−−∫

=
=

−        (52) 



11(47) 

Inserting the values of 1y  into (52) now gives: 

 

2
22

2

22

22

3

22

2

2

2

2

3

22

2

2

22

,72 )
2

)(

2

)())((

)(
(

2

dy
LyLNy

Ly

y

LNy

Ny
IF

M

Ny

b

+
+

+−
−

+

+

+−

−−
= ∫

=

→

v
       

(53) 

 

In order to solve the integration of the two first terms, the formula  
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which through usage of the integral ∫
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It remains then to integrate the two two last terms of Eq. (53). 

which in the case of Eq. (53) gives for the two two last terms  
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Summing the results from the two first terms to thte two last terms of Eq.(53) accordingly 
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Performing the evaluation of the two last terms consisting of primitive functions, between the 

given boarders, gives 
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3.1.2.2. The First Ampere Law Term from Branch 2 to 7 

Applying integral (2a) gives ∫ ∫
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Having a term 2
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f , it seems reasonable to search for a primitive function 2
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f , which after 

differentiation with respect to 1y  (the order of integration arbitrarily chosen) gives  
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Using again integral (61) gives the result 
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Evaluation gives )ln2
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+−+−
=→

v

 (70) 

3.1.2.3. Both Ampere Law Term from Branch 2 to 7 
By summing the now the two contributions above, Eq.(65) and (70) respectively, one attains 

the total Ampère force  from branch 2 to 7 

bF ,72→

v
=
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+
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+
−

+−

−

 

 (71)   

3.1.3. Integral from branch 10 to branch 5 
The integral from branch 10 to branch 5 has been chosen directly after the case with branch 2 

to branch 7, since  they show great similarities. Please compare with section 3.1.2, Eq. (36) to 

(39). 

In this case  

)0,,0( 11 dysd −=
v

  (72) 

)0,,0( 22 dysd =
v

  (73) 

)0,,( 12 yyLr −=
v

  (74) 
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22

12 )( Lyyr +−=   (75) 

Performing the integration 1y  goes from 0 to N and 2y   goes from N to M. 

As can be seen, the sign has been changed in the first two equations and in the third one the 

sign before L  has been changed. In writing eq. (2) for this case, all these changes appear in 

pairs, and therefore, cancel. 

Therefore, one is able to write down the final result without performing any calculations, i.e.  

72510 →→ = FF
vv

=
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(
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+
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−

 (76)  

That can also be expressed by saying that the integral from branch 10 to branch 5 is 

symmetric with respect to the integral from branch 2 to branch 7. 

 

3.1.4. Integral from branch 1 to branch 5 (excluding the effect due to the current source 

in branch 1 –please see chapter 5.3.3) 

 
In this case  

)0,0,( 11 dxsd =
v

  (77) 

)0,,0( 22 dysd =
v

  (78) 

)0,,( 21 yxLr −=
v

  (79) 

2

2

2

1)( yxLr +−=   (80) 

Performing the integration, 1x  goes from 0 to L and 2y  too, goes from N to M 

3.1.4.1. The Second Ampere Law Term from Branch 1 to 5 (excluding the effect due to 

the current source in branch 1) 
Applying integral (2b) 

gives 

2

5
2

2

2

1

211

2

2

0

2

,51

))((

)(3

11 2 yxL

dydxxLy
IF

L

x

M

Ny

b
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−
= ∫ ∫

= =

→

v
 (81) 

Defining ))((
2

2

2

1 yxLf +−=  (82) 

having a term 2

5
−
f , it seems reasonable to search for a primitive function 2

3
−
f , which after 

differentiation with respect to 1x  (the order of integration arbitrarily chosen) gives  

1

2

5

2

3

dx

df
f
−

−   (14) 

Since )(2 1

1

xL
dx

df
−−=   (83) 

expression (14) develops to 

2

5
2

2

2

1

1

))((

)(3

yxL

xL

+−

−
 (84) 

which appears to be equivalent to a dominant factor of the integrand. 

The remaining factor is 2

1)( xL −   (85) 
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Letting the term 
5

2
22

12

1

))((

)(3

Mxx

xL

+−

−
 be equivalent to the variable 

dx

dv
in the formula (11) 

above, 
2

2yu =    (86) 

The integral (81) may now be identified with respective parts of Equation (12). 

Hence, 
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(
2 2

3
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2

2
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2
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== +

−
M
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M

Ny yL

dyy

y
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I  (87) 

The first term easily develops to )(ln
2

22 )(ln
2 N

M
II y

M

Ny
=

=
 (88) 

The second term may be solved if assuming that  

having a term 2

3
−
f , it seems reasonable to search for a primitive function 2

1
−
f , which after 

differentiation with respect to 1x  (the order of integration arbitrarily chosen) gives  

2

2

3

2

1

dy

df
f
−

−   (55) 

Since 2

2

2y
dy

df
=   (89) 

expression (55) develops to 

2

3
2

2

2

2

)( yL

y

+

−  (90) 

which appears to be equivalent to a dominant factor of the integrand. 

The remaining factor is 2y   (91) 

Letting the term 

2

3
2

2

2

2

)( yL

y

+

−  be equivalent to the variable 
dx

dv
in the formula (11) above, 

2yu =    (92) 

 

The second term thus becomes )22
22

((

22
22

2

22

)/ ∫+
== +

−
M

Ny

M

Ny Ly

dy
I Lyy  (93) 

Using the integral (61) the right term can be rewritten and 

Eq. (93) now develops to )ln((
22

22

2222

2

LNN

LMM
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N

LM

M
I

++

++
−

+
−

+
 (94) 

Adding the two terms (88) and (93), thereby taking account that gives the total integral 

)ln(ln
22

22
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2

2

2

,51

LNN

LMM

LN

N

LM

M

N

M
IF b

++

++
−

+
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+
+=→

v
 (95) 
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3.1.4.2. The First Ampere Law Term from Branch 1 to 5 (excluding the effect due to the 

current source in branch 1) 

In this case there will be no integral (2a), since 1sd
v
 is perpendicular to 2sd

v
. 

3.1.4.3 Both Ampere Law Terms from Branch 1 to 5 (excluding the effect due to the 

current source in branch 1) 
Due to the statement in 3.1.4.2 Eq. (95) expresses also the total integral and hence, 

 

)ln(ln
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2
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LMM
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IF
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+=→

v
 (96) 

 

 

3.1.5. Integral from branch 1 to branch 7 (excluding the effect due to the current source 

in branch 1-please see chapter 5.3.2) 

The integral from branch 1 to branch 7 has been chosen directly after the case with branch 1 

to branch 5, since they show great similarities. Please compare with section 3.1.4, Eq. (77) to 

(80). 

In this case  

)0,0,( 11 dxsd =
v

  (97) 

)0,,0( 22 dysd −=
v

  (98) 

)0,,( 21 yxr −=
v

  (99) 

2

2

2

1 yxr +=   (100) 

Performing the integration, 1x  goes from 0 to L and 2y  too, goes from N to M 

In this case  

3.1.5.1. The Second Ampere Law Term from Branch 1 to 7 (excluding the effect due to 

the current source in branch 1) 
Applying integral (2b) 

gives 

2

5
2

2

2

1

21212

0

2

,71

))((

))((3

11 2 yx

dydxyxy
IF

L

x

M

Ny

b

+−

−−
= ∫ ∫

= =

→

v
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        (101) 

However, integrating a function of 1x  between 0 and L is equal to integrating the same 

function with argument 1xL −  along the same interval, as is being done in Eq. (81), due to the 

case with branch 1 affecting branch 5. Hence, 

=→ bF ,71

v
)ln(ln

22
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2

2

2
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N

M
IF b

++
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−
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+
+=→

v
     (102) 

 

 

3.1.5.2. The First Ampere Law Term from Branch 1 to 7 (excluding the effect due to the 

current source in branch 1) 

In this case there will be no integral (2a), since 1sd
v
 is perpendicular to 2sd

v
, just similar to the 

case with branch 1 affecting branch 5, described in section 3.1.4.2. 

3.1.5.3 Both Ampere Law Terms from Branch 1 to 7 (excluding the effect due to the 

current source in branch 1) 
 

Due to the statement in 3.1.5.2 Eq. (102) expresses also the total integral and hence, 

 



17(47) 

)ln(ln
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 (103) 

 

3.1.6. Integral from branch 2 to 6 
In this case  

)0,,0( 11 dysd =
v

  (104) 

)0,0,( 22 dxsd −=
v

  (105) 

)0,,( 12 yMLxr −−=
v

  (106) 

2

1

2

2 )()( yMLxr −+−=   (107) 

Performing the integration, 1y  goes from 0 to N and 2x   goes from 0 to L. 

3.1.6.1. The Second Ampere Law Term from Branch 2 to 6 

gives 
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Defining )))(()(( 2

2

2

1 LxyMf −−+−=  (109)   

having a term 2

5
−
f , it seems reasonable to search for a primitive function 2

3
−
f , which after 

differentiation with respect to 1x  (the order of integration arbitrarily chosen) gives  

2

2

5

2

3

dx

df
f
−

−   (110) 

Since )(2 2

2

Lx
dx

df
−=   (111) 

expression (108) develops to 
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1

2
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Lx
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−−
 (112) 

which appears to be equivalent to a dominant factor of the integrand. 

The remaining factor is 2

1 )( yM −   (113) 

Letting the term 

2

5

2

2

2

1

2

)))(()((

)(3

LxyM

Lx

−−+−

−−
 be equivalent to the variable 

dx

dv
in the formula 

(11) above, 2

1)( yMu −=    (114) 

The integral (108) may now be identified with respective parts of Equation (11). 

Hence, 
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 (115) 

The first term will be integrated first since it is most simply integrateble. It may be written 

))ln(( 1

1
)(

0
0 1

2

,62
1

1

yM
N

y

N

y

b
yM

IfirsttermF −−∫ =
=
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=
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 = 
M

NM
I

−
− ln2     (116) 
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The analysis of the second term will develop as follows, thereby using the partial integral 

formula (11) 

∫+−−−
==

→
+−
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LyM
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IondtermFd LyMyM
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  (117) 

Applying Eq. (61) upon the last term within this expression and thereafter evaluating 

accordingly, gives 
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 (118) 

Adding the two terms (116) and (118), gives the total integral 
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 (119) 

3.1.6.2. The First Ampere Law Term from Branch 2 to 6  

In this case there will be no integral (2a), since 1sd
v
 is perpendicular to 2sd

v
, just similar to the 

case with branch 1 affecting branch 5, described in section 3.1.4.2. 

 

3.1.6.3 Both Ampere Law Terms from Branch 2 to 6 
Due to the statement in 3.1.6.2 Eq. (119) expresses also the total integral and hence, 
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 (120) 

 

3.1.7. Integral from branch 10 to 6 
The integral from branch 10 to branch 6 has been chosen directly after the case with branch 2 

to branch 6, since they show great similarities. Please compare with section 3.1.6, Eq. (104) to 

(107). In this case 

)0,,0( 11 dysd −=
v

  (121) 

)0,0,( 22 dxsd −=
v

  (122) 

)0,,( 12 yMxr −=
v

  (123) 

2

1

2

2 )( yMxr −+=   (124) 

Performing the integration, 1y  goes from 0 to N and 2x   goes from 0 to L. 

3.1.6.1. The Second Ampere Law Term from Branch 10 to 6 
Applying integral (2b) 

gives  
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However, integrating a function of 2x  between 0 and L is equal to integrating the same 

function with argument 2xL −  along the same interval, as is being done in Eq. (108), due to 

the case with branch 2 affecting branch 6. Hence, using Eq. (119) for the result of bF ,62→

v
, 
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 (126)  

 

3.1.7.2. The First Ampere Law Term from Branch 10 to 6  

In this case there will be no integral (2a), since 1sd
v
 is perpendicular to 2sd

v
, just similar to the 

case with branch 1 affecting branch 5, described in section 3.1.4.2. 

3.1.7.3 Both Ampere Law Terms from Branch 10 to 6 
Due to the statement in 3.1.7.2 Eq. (126) expresses also the total integral and hence, 
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 (127) 

The sum of all the contributions thus far (from parts of the bridge far away from each others) 

is: (thereby using Wesley’s notation [4]): 

))(11ln(lnln)(1(2' 222

M

L

L

N

M

NM

M

L
IF ++−−

−
−+=  (128)   

This expression has to be added to the contribution from the parts of the bridge that are in 

close contact to each others, i.e. 52→  and 710→  respectively, Eq. (306). 

3.1.8. Integral from branch 10 to 7 

This case is more difficult to treat than the preceding ones, since here these two branches (like 

2 to 5) come close to each others and therefore they can not be treated as thin conductors 

consisting of a line. This means that volume integrals will have to be used, involving 

principally the three Cartesian variables of both branches. The integral formulas are defined in 

Eq. (1). Since the y component of the force is requested, the scalar product has to be taken 

with )0,1,0(=yu
v

 (129) 

While ),,( 121212 zzyyxxr −−−=
v

 (130) 

as in the preceding cases treated above, 

since in all cases the y component of the force is being analysed, for simplicity all the 

results due to Eq. (1) and (2) treated below will mean the y component. 

Thus, instead of always writing ........6 =• yuFd
vv

it will simpler be written ........6 =Fd
v

 

In this case 

)0,,0( 11 dysd =
v

  (131) 

)0,,0( 22 dysd =
v

  (132) 

),,( 121212 zzyyxxr −−−=
v

  (133) 
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12 )()()( zzyyxxr −+−+−=   (134) 

By practical reasons the two last terms below the root sign will be called  
2

12

2

12

2 )()( zzxxA −+−=   (135) 
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3.1.8.2. The First Ampere Law Term from Branch 10 to 7  
Using Eq. (1a), this leads to  
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Integrating first the integrand first with respect to 2y  gives the primitive function 

2

12

2

12

2

1

2

12

2

12

2

1 )()()(

2

)()()(

2
)/2(

2 zzxxyNzzxxyM
r

M

Ny −+−+−
−

−+−+−
=

=

 (137) 

Integrating in the next step with respect to 1y  gives the result 
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 (138)  

The remaining four integrals will follow. 

 

3.1.8.3. The Second Ampere Law Term from Branch 10 to 7 
Using in this case Eq. (1b) 
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3.1.8.3.1. Integrating with respect to 2y  

Having a term 2

5
−
f ,  2rf =   (140)    

it seems reasonable to search for a primitive function 2

3
−
f , which after differentiation with 

respect to 2y  (the order of integration arbitrarily chosen) gives  
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df
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−   (141) 

Since )(2 12
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dy
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−=   (142) 

expression (141) develops to 
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which appears to be equivalent to a dominant factor of the integrand. 

The remaining factor is 2

12 )( yy −   (144) 

Letting the term 

2

5

22

12

12

))((

)(3

Ayy

yy

+−

−
 be equivalent to the variable 

dx

dv
in the formula (10)   
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−
  (145)    above,  

2

12 )( yyu −=  (146)  

Integrating accordingly one step with respect to 2y  , thus using the formula for partial 

integration (11) gives the following result for the primitive function: 
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3.1.8.3.2. Integrating with respect to 1y  

The last term being ~ 32

3

rf =
−

, it seems reasonable to search for a primitive function 2

1
−
f , 

which after differentiation with respect to 1y  (the order of integration arbitrarily chosen) gives  
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expression (143) develops to )( 12
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 (150)  

which also may be expressed as 
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Hence, Eq. (147) develops to  
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By practical reasons the next integration step, using 1y  , one may solve each term separately, 

calling them by Roman numbers I, II, III and IV respectively. 

Using the partial integration formula (11) gives: 
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which may further be developed and accordingly, evaluated, thus attaining 
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Performing in the similar way with term II of Eq. (152) gives accordingly: 
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Term III can be straightforwardly integrated: 
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Following this example term IV  accordingly becomes 
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Summing now the contributions (138), (154), (155), (156) and (157) will give the total  

result due to both Ampère Law terms after having integrated with respect to both the y 

vatriables: 

 

+
+

−
+−

−
−

+
= ∫∫∫∫

====

→
222222

0

1

0

1

0

2

0

2

2

710

)(
(

1121
AN

N

ANM

NM

AM

M
dxdzdxdzJF

w

x

t

z

w

x

t

z

v
 

)ln
)(

ln
2222

22

ANN

A

AMM

ANMNM

++
−

++

+−+−
        (158)   

If the contribution from the branches 2-5 is added, we get twice the expression, which is 

simultaneously what Wesley [2] has attained. We begin with 10-7 (all variables beginning 

with zero) 

Wesley [2] in his solution makes use of the mean value theorem for integrals for  

0→w , 0→t ,  or for 0→R , where JwtI =  (159) 

This makes it possible to simplify Eq. (158), thereby using (135), to  
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By practical reasons the last terms will get a name according to: 
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Now remains four integration steps, which will cause some tedious calculations, which for the 

sake of clarity will be shown here. 

 

3.1.8.3.3. Integrating with respect to 2x  

Wanting to solve the integral using partial integration techniques, which have appeared very 

useful thus far, leads to the primitive function  
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Differentiating this expression gives: 
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Before integrating with respect to 2x , this result may favourably be used in order to begin 

solving the integral according to  Eq. (161) : 
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The second term may be developed as follows: 
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The first term of that expression is simply solved; the second requires the usage of the 

integration formula 
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Now the results due to development of both terms of the integral Eq. (164) above may be 

gathered through adding Eq.(165) to Eq. (168): 
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 (x being used as a local variable during each of the following integrations) 

3.1.8.3.4. Integrating with respect to 1x  

Now there are five terms to be integrated. They will best be treated separately. Due to the 

relatively simple shape, the second term will first be treated. Thus, 
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The formula (11) for partial integration will favourably be used in this case. Hence, 
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Using the primitive functions of the two integrals of the right hand term,
2

1½x−  and 
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Thereafter the first term of Eq. (163) will be treated. 

However, integrating a function of 1x  between 0 and w is equal to integrating the same 

function with argument 1xw −  along that same interval, as is being done in Eq.(164). 

Hence,  

)(sec')(" ondtermFfirsttermF
vv

=    (174) and their sum will be 

=+ )(sec")(" ondtermFfirsttermF
vv

 

−−+−+−−+− ∫∫
==

))(ln()())(ln((
2

1 2

12

22

12

22

12

22

0

1

0

2

2

12

zzwzzwzzwwdzdzJ

t

z

t

z

))))ln(()( 2

12

2

12 zzzz −−−  (175)  

The third term of Eq. (169) will be very easily treated. 
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The two last terms (fourth and fifth) require the usage of the following integration formula: 

∫ +−= )1ln(½arctanarctan 2zzzzdz  [15]  (177) 
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In order to use Eq. (171) it is obviously needed a variable substitution 
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This leads to: 
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which develops to  
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and, finally,  
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However, integrating a function of 1x  between 0 and w is equal to integrating the same 

function with argument 2xw −  along the same interval, as is being done in Eq.(182). 

Hence,  
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Making now the sum of all terms, due to Eq. (175), (176) and (184) it is now possible to 

write 
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This integral will now be solved for one term after another. 

Before doing so, it would be practical to first simplify the integrand and put its respective 

terms on one row each, as will be done in the following treatment. 
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Solving 1F
v
 (187), the final result given in expression(227) 

 

Beginning thus with the first integral, 1F
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First one has to observe a property of the integrand that makes it impossible to perform the 

integration straightforwardly. The denominator namely becomes zero at the point where 

21 zz = . Since the integrand is an arctan function, its value jumps π  at that point. In order to 

succeed with the integral, one has to divide the integration into two procedures, one below 

that singular point and one above it. Hence,  
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Using the variable substitution 
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=     (193)  (x being used as a local variable as usual)  

it will be possible to use integral (177) 
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The next step to be performed is to solve the last integral. That will be done by using both the 

partial integral formula (11) and Eq.(177). 
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Now it is found that two of the terms are the same kind of functions. Hence, one may simplify 

Eq. (195) into 
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The last term of that expression may now be solved using partial integration (11), which leads 

to:
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The last term may be solved by separating into partial fractions: 
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Hence, Eq. (197) develops to: 
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Using now Eq. (199) into Eq. (196) gives accordingly: 
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But going back to Eq. (194) leads now to 
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Evaluating this expression now gives 
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This integral will now be solved for one term after another. 
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Before doing so, it would be practical to first simplify the integrand and put its respective 

terms on one row each, as will be done in the following treatment. 
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In the last case the two linear terms (3
rd
 and 6

th
 in Eq. (202)) have already been combined to 

one.  

In order to solve (203) the following variable substitution will be done: x
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Using the partial integration formula (11),  the last integral of (209) may be rewritten: 
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In order to proceed, it must first be realized that  
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Inserting all these partial results into Eq. (209) gives accordingly: 

)
1

11
(

3

13)(2(½
23

//
/

42

11 )arctan)3/1(
x

x
dx

x
dx

x
dxwJF

twxtwx
twx

a xx +
++−+−= ∫∫∫−

∞

=

∞

=

∞

=

v
 

 (212) 

However, this expression may be further simplified after performing the integrals: 
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Inserting the boarder values of the primitive function now gives accordingly: 
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It remains now to solve two integrals in order to finally evaluate Eq. (189). In order to 

proceed, partial integration according to Eq. (12) will favourably be used. 
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For the reader’s convenience, however, this is also done here: 

In order to solve (204) the following variable substitution will be done: x
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and, hence,  =bF11
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When now dealing with the following integral, Eq. (205), the same variable substitution as in 

Eq. (203) has to be done. This leads to: 
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Using the partial integration formula (11), the last integral of (218) may be rewritten 
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In order to proceed, it must first be realized that  
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Inserting all these partial results into Eq. (209) gives accordingly: 
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However, this expression may be further simplified after performing the integrals: 
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Inserting the boarder values of the primitive function now gives accordingly: 
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Eq. (206) reminds of Eq. (205).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bFd 12
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The result will, however, this time not be derived especially. 

The final integral belonging to Eq. (202), Eq. (207), is very easily performed, since the 

integrand is only a constant. Hence, 
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In order to simplify the reader’s overview, all the results of integrating Eq. (202) will here 

be gathered: 
The result is: 
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This result may be further simplified to 
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However, the twoarctan  terms will be kept separated from each others, due to needs that will 

appear later. 

 

Solving 2F
v
 (188), the final result given in expression(263)  

Beginning thus with the second integral, 2F
v
, closer defined in Eq. (188) 

 

Using the variable substitution 12 zzx −=     (228)  (x being used as a local variable as usual)   

This makes the boarders change: 02 =z  is transformed to 1zx −=  and tz =2   to 1ztx −=  

.Further one can rewrite dxdz =2  . Hence, one may now rewrite Eq. (188): 
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In order to solve this integral, the partial integral formula (11) will be used: 
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The last term of Eq. (230) may be simplified according to the following steps: 
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and, hence, using all these results, Eq. (229) may be rewritten: 
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Inserting the values of the primitive function above gives 
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This integral will now be solved for one term after another. 

Before doing so, it would be practical to first simplify the integrand and put its respective 

terms on one row each, as will be done in the following treatment. 
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In order to solve Eq. (236) the following variable substitution will be done: xzt =− 1 . This 

makes the boarders change: 01 =z  is transformed to tx =  and tz =1   to 0=x  .Further one 

can rewrite dxdz −=1  . Hence, one may now rewrite Eq. (236): 
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Using now the partial integration formula (11),  the last integral of (244) may be rewritten: 
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These results make it now possible to rewrite Eq. (244) according to: 
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This expression can be further simplified: 
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Eq. (237) reminds of Eq. (236).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bF21
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The result will, however, this time not be derived separately.  

 

In order to solve Eq. (238) the following variable substitution will be done: x
w

zt
=

− 1 . This 

makes the boarders change: 01 =z  is transformed to 
w

t
x =  and tz =1   to 0=x  .Further one 

can rewrite wdxdz −=1  . Hence, one may now rewrite Eq. (238): 
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Now )1ln(½arctanarctan 2∫ +−= xxxxdx   (177)     [15] 

Hence, Eq. (252) develops to  
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Inserting the values of x into the primitive function gives 
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Eq. (239) reminds of Eq. (238).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bF22
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The result will, however, this time not be derived separately.  

 

Eq. (240) is solved rather straightforwardly. First a variable substitution has to be made: 

xzt =− 1 . This makes the boarders change: 01 =z  is transformed to tx =  and tz =1   to 

0=x  .Further one can rewrite dxdz −=1  . Hence, one may now rewrite Eq. (240): 
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giving thus the result  )
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Eq. (241) reminds of Eq. (240).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bF23
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The result will, however, this time not be derived separately.  

 

Eq. (242) will be solved rather straightforwardly. First a variable substitution has to be made: 

xzt =− 1 . This makes the boarders change: 01 =z  is transformed to tx =  and tz =1   to 

0=x  .Further one can rewrite dxdz −=1  . Hence, one may now rewrite Eq. (221): 
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giving easily the result )
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Eq. (243) reminds of Eq. (242).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence, =bF24
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In order to simplify the reader’s overview, all the results of integrating the integral 

equations (236) to (244) will here be gathered: 
The result is: 
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which may be further simplified according to 
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Solving 3F
v
 (189), the final result given in expression(284) 

 

Beginning thus with the third integral, 3F
v
 

Using the variable substitution 12 zzx −=     (264)  (x being used as a local variable as usual)   
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This makes the boarders change: 02 =z  is transformed to 1zx −=  and tz =2   to 1ztx −=  

.Further one can rewrite dxdz =2  . Hence, one may now rewrite Eq. (189): 
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In order to solve the integral, the partial integral formula (11) will be used: 
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Solving the integral for the given interval gives 
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Inserting the values of x into the primitive function gives 
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simpler written  )
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This integral will now be solved for one term after another. 

Before doing so, it would be practical to first simplify the integrand and put its respective 

terms on one row each, as will be done in the following treatment. 
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In order to solve Eq. (270) the following variable substitution will be done: xzt =− 1 . This 

makes the boarders change: 01 =z  is transformed to tx =  and tz =1   to 0=x  .Further one 

can rewrite dxdz −=1  . Hence, one may now rewrite Eq. (270) 
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Using now the partial integration formula (11),  the last integral of Eq. (274) may be 

rewritten: 



34(47) 

24
ln

12

2

12
ln

12
ln

3

4
2

4

2

4
2

4
2

3

01

x
x

x

x

xx
dxx

x
x

x
dx

t

z

−=−= ∫∫
=

  (275) 

and hence, Eq. (253) can be written: 
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One term therein may cause some confusion, namely::  
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However, since the term 4x∝ decreases more rapidly than 2ln x  increases, as 0→x  this 

term (277) as a whole, approaches zero.  

This can easily be proven mathematically, by comparing 
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Eq. (271) reminds of Eq. (270).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bF31

v
)

24
ln

24
(½

4
2

4
2

31

t
t

t
JF a −−=

v
         (279)   

The result will, however, this time not be derived separately.  

 
In order to solve Eq. (272) the same variable substitution as in the preceding case may be 

used. But apparently, the solution can immediately be realized due to the simplicity of the 

expression, and accordingly,  
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Inserting the values of 1z into the primitive function gives 
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Eq. (273) reminds of Eq. (272).It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  
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In order to simplify the reader’s overview, all the results of integrating the integral 

equations (270) to (273) will here be gathered: 
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or even simpler: 
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Solving 4F
v
 (190), the final result given in expression(313) 

 

Beginning thus with the third integral, 4F
v
 

Using the variable substitution 12 zzx −=     (285)  (x being used as a local variable as usual)   

This makes the boarders change: 02 =z  is transformed to 1zx −=  and tz =2   to 1ztx −=  

.Further one can rewrite dxdz =2  . Hence, one may now rewrite Eq. (190): 
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In order to solve this integral, the partial integral formula (11) will be used: 
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The last term of Eq. (265) may be simplified according to the following steps: 
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which after integration thereby using Eq. (167)   [14] gives the result 
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 Inserting the values of x into the primitive function gives 
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simpler written:  
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This integral will now be solved for one term after another. 

Before doing so, it would be practical to first simplify the integrand and put its respective 

terms on one row each, as will be done in the following treatment. 
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In order to solve Eq. (293) the following variable substitution will be done: xzt =− 1 . This 

makes the boarders change: 01 =z  is transformed to tx =  and tz =1   to 0=x  .Further one 

can rewrite dxdz −=1  . Hence, one may now rewrite Eq. (293) 
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Using now the partial integration formula (11),  the last integral of Eq. (298) may be 

rewritten: 
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The last term of Eq. (299) may be simplified according to the following steps: 
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Performing the integrations gives  
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and accordingly  
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Inserting the values of x into the primitive function gives 
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Simpler written  )
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Eq. (294) reminds of Eq. (293). It may be recalled that integrating a function of 1z  from 

t→0  is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bF41
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In order to solve Eq. (305) the following variable substitution will be done: x
w

zt
=

− 1 . This 

makes the boarders change: 01 =z  is transformed to 
w

t
x =  and tz =1   to 0=x  .Further one 

can rewrite wdxdz −=1  . Hence, one may now rewrite Eq. (305): 
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Using now the integral formula (177)  [15] gives 
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Inserting the values of x into the primitive function gives 
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simpler written: )ln)ln(arctan2(½ 2422432
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Eq. (296) reminds of Eq. (295) It may be recalled that integrating a function of 1z  from t→0  

is equal to integrating the same function, but with argument 1zt −  from t→0 . 

Hence,  =bF42
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Eq. (297) is solved very easily, since the integrand is only a constant. Hence,  
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In order to simplify the reader’s overview, all the results of integrating the integral 

equations (293) to (297) will here be gathered 
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Solving 
5F
v
 (191), the final result given in expression(314) 

This integral is very easily solved, since the integrand is only a constant. 

 

Hence,  )3(½ 222

5 twJF −−=
v

 (314) 

 

Writing the total result 54321 FFFFFF
vvvvvv

++++=  (315) 

The task is now to gather all the results attained above into one comprehensive expression, in 

the shape of a table, with all terms belonging to a certain function on one row each. The 

results were attained in the expressions (227), (263), (284), (313) and (314) respectively. 

 

 

First, however, the results are gathered plainly in the order they are attained: 
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The table will be as follows, without any simplifications.: 
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Further steps will now be undertaken in order to simplify the expression above, 

At first, of course one can easily simplify by adding similar terms. This leads to: 
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At first one may now remark the symmetry between two of the arctan terms: 
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Since zarc
z
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1
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and π
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1
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Where the positive sign constitutes the primary solution, which otherwise are attained if using 

the complex definitions of the arctan and arccot functions: 
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Hence, expression (295) develops to twtw 33 2
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Since the current JwtI =  (303) and further a suitable approximation is that the width w  of 

the wire may be regarded as approximately the same as the thickness t , i.e. tw ≅  (326) 

Which altogether leads to  
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This expression may be further simplified, and one finally attains: 
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However, since the result is achieved for only one branch of the bridge, for the branch 10-7. 

Since branch 2-5 shows the same properties with respect to current and dimensions of the 

bridge, the result according to expression (305) can simply be doubled in order to attain the 

results from both branches. Hence, =''

sF =Fd
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The sum of Eq. (329) and (128) gives the total force between the two halves of Ampère’s 

Bridge according to the interpretation of Wesley. He writes: 
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Wesley also prefers to use the circular cross section d of the wire that Ampére’s Bridge 

consists of instead of the Cartesian variable w due to a quadratic cross section. That makes the 

following transformation formula necessary: 

2

d
w

π
=  (331) 

4. Conclusions concerning the derivation by Wesley 
It has been convincingly shown that Dr. Wesley has correctly attained his formula, derived 

from Ampère’s Law, intended at predicting the force between two parts of Ampère’s Bridge. 

Measurements on Ampere’s Bridge performed by Pappas and Moyssides [24] has been 

presented in his papers [3] and [20].and he has succeeded in applying his formula upon that 

set, thus achieving some resemblance with the measurement results by Pappas and Moyssides 

[24]. However, Jonson has pointed to deficits in that result [6] and proposes another model, 

making use of only Coulomb’s law.  
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Figure 2. Showing the force between the two halves of Ampère’s Bridge as a function of 

the circular cross section d  [5]. (Figure by Wesley redrawn by Jonson) 

 

5. Jonson’s method use Coulombs law in order to predict the force within Ampère’s 

Bridge. 

It has usually been assumed that Coulomb’s law, which is normally being used in order to 

explore electrostatic forces, is unable to account for electromagnetic forces, i.e. especially 

forces between electric currents. 

Jonson has made an effort to do that [6], thereby taking into account the effects of the time 

delay that inevitably occurs with respect to all action-at-a distance. (He claims support in 

favour of the opinion that believes that no action takes place instantly, that is requires a 

transport time in order to have effect). 

5.1. Definition of variables that appear in the expressions for the force upon Ampère’s 

Bridge. 

Please see chapter 3.1. That is, the same variables are defined by Jonson as by Wesley. 

5.2. The expression for the force between two currents according to Jonson. 
The same procedure with respect the choice of integral type is used as in the analysis by 

Wesley. 

For current elements far away from each others line integrals will be used and 

5

21

2

02 ))((

4 R

RsdRsdRI
Fd

vvvvv
v ••
=

π
µ

  (332)    

and for  parts of the bridge in close contact with each others volume integrals have to be used: 
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Both formulas can straightforwardly be derived from the result in an earlier paper on the 

subject [8]. 

The formula is there written according to: 
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where vI ρ=  (335) is being used. 

 The well-known relation 
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makes the identification with Eq. (332) and (333) easily conceivable. 

 

In order to attain formal expressions for the force due to Coulomb’s Law, expressed in this 

application, a comparison between Wesley’s expressions for Ampère’s Law and Jonson’s for 

Coulomb’s law must be done. They show one important feature: Both contain terms 

proportional to 
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The expressions by Wesley were earlier defined in Eq. (1) and (2). And are repeated here for 

the reader’s convenience: 
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Seemingly, Jonson uses only the second type of term and with a constant three times smaller 

than Wesley.  Hence, in order to attain the Jonson expression, firstly the first type of term has 

to be removed from all the derivations by Wesley, secondly, the remaining expression must 

accordingly be divided by three. 

Also a third thing must be done, which has thus far been unrecognized by everybody: to take 

into account the impact of the current source (battery) of the circuit. 

This was originally done in the 1997 paper of this author [7]. here, only the results will be 

used. 

A difference between the expressions by Wesley and Jonson is also the different way they 

define the coupling constant before the spatial equations: The experiment reports were 

reported [1] with the unit abampere instead of ampere, which causes a need to divide the 

whole force by 100 (10 for each current) and they used gramweight for the force, which in 

turn makes a division by 2/980 smm  needed. However, Jonson follows the scaling procedure 

by Wesley, when dealing with the Coulomb model of his. But when the magnetic force law is 

treated, the commonplace 70 10
4

−=
π
µ

is being used as a coupling constant. 

(338) 

5.2.1. The removal of the ‘first type’ terms from the expressions by Wesley. 
The following terms are to be removed: Eq. (34), Eq. (69) twice, since section 3.1.3 describes 

an equal case to section. 3.1.2. Finally, Eq. (138) must be removed.from Eq. (158).  

If all this is correctly being done, all terms due to the ‘first’ Ampere law term disappears. 

Wesley’s approach to separate the force into two main terms, one due to portions of the bridge 

not in immediate contact with each others, 'F , and portions in immediate contact, ''F , is 

used also with respect to Coulomb’s law interpreted by Jonson, but then with an added letter J 

to the variable: 'JF  and ''JF  instead. 

The result of these actions is that a new expression for the force term due to parts of the 

bridge in close contact with each other (i.e. 710→ and 52→ ), corresponding to Eq. (138), 

according to: (Twice the result from Eq. (138) is needed, since 710→ and 52→  both 
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contribute with equal results due to their symmetric position (also commented below Eq. 

(158)). 
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In order to attain 'JF ,  Eq. (34) and twice Eq. (69) is removed from Wesley’s expression (Eq. 

(128), the terms thus being  
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Adding now Eq. (340) to Eq. (341), thereafter dividing by a factor 3, gives the parts of 

Ampère’s law that according to Jonson corresponds to Coulomb’s law: 
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The last term, however, is equal to Eq. (329), whose result may simply be added.(repeated 

here for convenience) 
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Using also
2

d
w

π
=  (331) 

Makes it easy to evaluate the formula, favourably for the endpoint values of the diagram, i.e. 

mm6.1  and mm2.3  respectively, which gives – after taking also into account Eq. (349),  

the values 52 10)/(7.10 −×= ampgmweightFJ  and 52 10)/(3.9 −×= ampgmweightFJ . 

Apparently, this formula too (i.e. Coulomb’s law in Jonson’s interpretation) succeeds in 

predicting a decreasing force with respect to the circular cross-section, the values being 

situated not-so-far from the measured ones. 

 

5.3. The impact of the current source in contributing to the force. 
Jonson also discovered that the very current (voltage) source also plays a role in contributing 

to the total force between two currents [7] 

The correction to be made is due to the effects of the current source, since all the work that is 

being done on the electrons going through the circuit by the electric field must be exactly 



43(47) 

balanced by the work being done by the same electric field on the electrons which remain on 

the poles. As the current flows, namely, the electric field inevitably weakens, and hence, the 

electrons that still are situated on the poles feel free to move slightly. How this is best 

mathematically treated is described in the 1997 paper by this author [7]. 

The current to be defined to the poles is the equivalent of the length of the circuit times the 

current through the circuit times a dirac function due to the ‘point’ nature of the ‘slight’ 

movement of the pole electrons, while still being at the poles. For simplicity, the battery is 

assumed to be situated at half the length of branch 1. Hence, the ‘pole current’  
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L
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Three contributions to the total force will appear: to branch 5,6 and 7 espectively. 

5.3.1 Correction term battery to branch 6. 

The following expression for the force may be defined in this case, thereby using Eq. (332): 
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Performing the integrals gives : 
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5.3.2 Correction term battery to branch 7. 

Again applying Eq. (332) now gives the following expression for the force: 
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Performing the integrals gives: 
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5.3.3 Correction term battery to branch 5. 
Due to the symmetry of the problem, the same result will appear in this case. 

 

5.3.4 The sum of all correction terms 
Adding the results above, Eq. (345), double Eq. (346) makes: 
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 (348) 

Evaluation gives 251.0 IFcorr −≅  (349) 

 

Using Eq. (342) and taking into account Eq. (349) gives a result that fairly well fits with 

measured values. 5107.10 −×  at the left side of the diagram, 5103.9 −× at the right side, thereby 

using Wesley’s scaling. 
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6. Comparison with the Magnetic Force Law (Lorentz Force) 
Jonson has also performed a calculation of the force based upon the traditional ‘Magnetic 

Force Law’, the so-called Lorentz force [10]. 

In the DC cases the traditional expressions for the so-called magnetic field and the magnetic 

‘Lorentz’ force will be used. The undergraduate course book this author has used during his 

MSc studies [22] expressed the laws as follows (indices adjusted to fit with this paper): 
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Now the contribution to the magnetic field at each branch of the upper bridge will be derived, 

provided it gives rise to a force component along the y axis. It can easily be stated which parts 

of the bridge will not give rise to y components, namely those aligned with the y axis, i.e. 

branch 5 and 7. Hence, the task before us is to derive expressions for the magnetic field at 

branch 6 only. All the three branches of the lower part of the bridge will contribute. 

6.1. Magnetic field and magnetic force from branch 1 to 6. 

Realizing first that )0,0,( 11 dxsd =
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Using thereafter Eq. (324) gives: 
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Using the variable substitution 12tan xxM −=α  (355) gives 
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which reduces to 
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and, finally, after performing the integral, 
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Thereafter Eq. (350) has to be used in order to attain the magnetic force mF
v

 

Realizing first that )0,0,( 22 dxds −=  (360) 

gives 
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Solving the integral gives accordingly: 
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Simpler, one may write 
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A detailed derivation will follow here later, Short-to-speak, however, that force law fails 

completely to predict the ‘parallel force’, first observed by Ampere. 

 

6.2. Magnetic field and magnetic force from branch 2 to 6. 

 

Realizing first that )0,,0( 11 dysd =
v

 (364) ,  )0,,( 12 yMLxr −−=
v

 (365) 

Using thereafter Eq. (351) gives: 
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Using thereafter the variable substitution  1yMx −=   (367)    gives 1dydx −=   (368) 

This leads to: 
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Using now the variable substitution xLx =− αtan)( 2   (370) 

gives 
α
α

2

2
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)( dLx
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−
=   (371) 

Using all this makes it possible to rewrite Eq. (369): 
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which reduces to 
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and, finally, after performing the integral, 
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Realizing first that )0,0,( 22 dxsd −=
v

 (360) 

gives 
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Using now the variable substitution  
x

Lx
1

2 =−    (376)  giving thus 
22
x

dx
dx −=   (377) 

makes it possible to rewrite the integral: 
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Which may be simplified to: 
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Solving the integral gives: 
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Finally, one attains 
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6.3. Magnetic field and magnetic force from branch 10 to 6. 
Due to the symmetry of the result is the same as that from branch 2 to 6. 

6.4. The total magnetic force. 
The total magnetic force is attained as the sum of the three contributions above. 

Using the values given by Wesley [5], [24], L=0.48 m, M=1.20 m and N= 0.43 m gives a 

resulting magnetic force ym uF
vv

51029.0 −×≅   (382) 

if using Wesley’s scaling. 

 

Apparently, the force is attractive but constant, with no dependence of the thickness of the 

circuit. Hence, the so-called magnetic (Lorentz) force is completely unable to account for the 

behaviour of the force within Ampère’s bridge. 

 

7. Conclusions. 

A has already been stated, the Jonson results basically confirm the slope of the measurement 

dependence of the cross section of the wire that Ampère’s Bridge consists of, whereas Wesley 

partially fails in this respect. However, the Lorentz force is completely unable to predict any 

spatial dependence. 

It is also necessary to be stated that the strength of the current one measures, presumes the 

Lorentz force participating in the torque that forces the arrow of a volt (ampere) meter to 

move.  

mFr
vvv

×=τ  (383) 

Hence, any measurement thus far contains a ‘circular proof moment . 

8. Variable list. 

This remains to be done. Mostly, the variables being used are identical with those defined by 

Wesley [1], [20]. A complete list will appear rather soon. 
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