
CHAPTER II 
 

THE MÖSSBAUER EFFECT 
 
 

1. Cross-section. 

 Under general assumptions the energy dependent cross-section for nuclear 

resonance processes can be expressed by (Breit and Wigner (1936), Kapur and Peierls 

(1938)). 
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where for the case of gamma ray resonant absorption 
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is the maximum absorption cross-section 

Eo the energy of the excited state 

Г the natural width of the excited state 

e gI I the spin of the excited and the ground state 

λ  the wavelength of the gamma ray 

Usually the excited state can decay by several modes, the most predominant one for low 

lying states being the internal conversion process.  The total width is then the sum of the 

partial widths; i.e., 

(1 )eii
Г Гγ γΓ Γ= +Σ = + %  

where  is the gamma ray partial width and α the internal conversion coefficient. Γγ
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 To get the final cross-section for absorption and scattering experiments σ(E) has 

to be modified depending on the number of emission processes occurring before final 

detection of the gamma ray; i.e., (Jackson, 1955) 
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 The cross-section has a Lorentzian shape with the full width at half maximum 

equal to Г.  In the case of hyperfine splitting (see Section 2.6, 2.7) each resolved line will 

exhibit this shape. 

 Similarly, the normalized source intensity can be expressed by 
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which is just the square of the Fourier analyzed time-dependent wave function of the 

photon. 

2. Lattice Binding. 

 The amazing feature about the Mössbauer effect is not only that the emission and 

absorption of the gamma rays occur without recoil, but also that the line is not Doppler 

broadened and exhibits, under ideal conditions, the natural line width. 

 The essential aspect of the recoilless effect is readily explained if one considers 

the radiating nucleus as strongly bound in a crystal such that the momentum is taken up 

by the crystal as a whole.  If, according to the Einstein model of a solid, the recoil 

energy R is small compared to that required to excite the lattice, the gamma ray will be 

emitted with the full transition energy Eo.  (See next section.) 
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 Classically (Shapiro (1961)) one obtains the unbroadened line by regarding the 

source atom as bounded in a harmonic oscillator potential such that during an emission of 

a quantum of frequency /o oEω = h  the thermal vibrations of the atom in the lattice (of 

frequency Ω) will modulate the source radiation.  The resulting frequency spectrum will 

consist of the fundamental carrier frequency ωowith side frequencies ωo± n Ω, n=1, 2, 

3....  The amplitude of the various components is given by the Bessel function n
xJ

c
ω 

 
 

o o , 

where xo  is the amplitude of oscillation of the atom.  The intensity of the central 

component, which can be identified with the unshifted Mössbauer line is 
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which, if generalized for a large number of lattice vibrations, can be 

expanded to give 
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2x  is the mean square displacement of the nucleus about its equilibrium position.  A 

similar factor is obtained for the absorption mechanism. 

 The implications of this result have been discussed by Frauenfelder (1962) and 

Nussbaum (1966) and in more general terms by Lipkin (1960).  Even though the classical 

treatment does account for the unshifted line, it does not account for the shape of the 

phonon spectrum.  In an actual solid the lattice vibration spectrum is a continuum with 

the individual oscillators interacting with one another.  Furthermore in a lattice 

containing different atoms, variations of the force constants between neighbouring atoms 

have to be considered. 
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3. Debye-Waller Factor. 

 The factor f gives that fraction of the radiation which is emitted and absorbed 

without recoil.  It is very similar to the Debye-Waller factor know from X-ray diffraction 

work, which describes the temperature variation of the elastically scattered radiation 

intensity. 

 Both factors depend on the mean square displacement of the radiating system.  To 

obtain £x2§ one can assume, to a first approximation, that the crystal obeys the Debye 

model; i.e., that the frequency spectrum is described by the density function. 
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normalized for the 3N possible modes of vibration, N being the number of atoms in the 

crystal.  Dω  is the maximum vibration frequency with the Debye temperature defined by 
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In a harmonic potential each mode of oscillation iω  has associated with it an 

energy 
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Averaging over all of the frequencies one obtains: 
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This integral can be readily evaluated at the limit of low and high temperature 
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... 3.3a.
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... 3.3b.

 Even though the integral in Equation 2.3.2 accounts for the predominant 

temperature dependence of f, an additional factor arises because of the volume 

dependence of Dθ  (Boyle, et al., 1961) which, for crystals with cubic symmetry, can be 

expressed through the Grüneisen constant ln
ln

D

V
θγ ∂

= −
∂

. 

 The effect of thermal expansion is then given by  
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where C  is the heat capacity per unit volume and  is the compressibility of the solid.  

Preston, et al., (1962) find that increasing the temperature of an iron lattice from room 

temperature to 1000°C decreases 

V K

Dθ  by about 100°K. 

 Changing the ambient pressure at the lattice has a similar effect on Dθ . 
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for iron 61.0 10D

D

θ
θ

−∆
×�  per kg/cm2 and is therefore negligible for most purposes. 
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 In the foregoing discussion, the characteristic lattice temperature has been 

assumed to be Dθ .  This is, however, not strictly the case, as can be readily seen by 

writing the integral for the heat capacity (Kittel, 1957). 
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... 3.6.

A comparison of this equation with Equation 2.3.2 shows that different weighting factors 

have been used in the two frequency integrals, so that the Dθ  obtained from specific heat 

measurements does not necessarily represent the lattice temperature of interest for 

evaluating f.  Whereas Cv accentuates the high frequency part of the spectrum, 

Equation 2.3.2 puts more weight on the low frequency part. 

 In a realistic model one would also have to consider the effects of the acoustical 

and the optical vibration modes in a crystal, and, in the case of impurity atoms in a host 

lattice, the presence of localized modes.  The acoustical modes have a broad frequency 

band that can be well approximated by the Debye model.  The frequency spectra of the 

optical and the localized modes are more peaked and can be better represented by the 

Einstein model (Wertheim, 1964) for which 
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h

h
 and Eω  is the Einstein frequency. 
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 Comparing Equations 2.3.3 and 2.3.7 for D Eθ θ=  one finds that the latter gives a 

higher value for f, a factor which is enhanced if <E Dω ω  as would be expected for a 

lightweight impurity in a heavyweight lattice (Montroll and Potts, 1955). 

 Accurate measurements of the recoilless fraction have given considerable 

information about the properties of various crystal lattices.  Boyle, et al., (1961) have 

shown that the temperature variation of f for the 24 keV radiation from 119Sn deviates 

from Equation 2.3.3, which they attribute to anharmonicities in the lattice potential. 

 The problem of an impurity atom in a host lattice has been treated by many 

authors and most recently by Mannheim and Simopolous (1968), who have detected the 

presence of localized vibration modes for iron in a Vanadium lattice.  They have 

calculated and verified experimentally that an increase in the force constant at the 

impurity site gives rise to an increase in f. 

 The above discussion is valid only for crystals with cubic symmetry.  For lower 

symmetries one has to consider £x2§ along the various crystal axes as has been shown for 

the case of potassium ferrocyanide (Duerdoth 1964) where f exhibits an angular 

dependence. 

 In general, to obtain a high recoilless fraction, a host lattice with a high Debye 

temperature has to be selected, one in which impurity atoms are strongly bound in a 

localized position. 

4. Transmission Line Width. 

 Ideally it should be possible to obtain an emission and absorption line of natural 

line width  with a resulting transmission line width of Γ 2Γ .  In practice, however, one 
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needs a finite absorber thickness to obtain a sizeable resonance effect, which will 

appreciably broaden the transmission line.  Also the various hyperfine interactions can 

produce a shifting or splitting of the line which, when unresolved, can cause additional 

broadening.  These effects are generally well understood and are described below. 

5. Isomeric Shift. 

 The isomeric shift was first observed by Kistner and Sunyar (1960) and results 

from the difference in the chemical environments at the source and absorber nuclei.  The 

nucleus having a finite radius R will interact electrostatically with the electron charge 

density at the nucleus e ( ) 2
0ψ .  This Coulomb interaction relative to that experienced 

by a point nucleus is 222   (0)
5 e

2Ze Rπ ψ .  If the charge radii ex grR , R  of the excited and 

the ground state of the nucleus are different, a change in the gamma ray transition energy 

will result, which is 

( )22 22   (0)   
5

ex greE Ze R R2πδ ψ= −  

 A relative shift between the emission and the absorption line will then occur if the 

chemical environments in the source and the absorber are different; i.e., if the respective 

electron charge densities at the nucleus 2(0)sψe  and 2(0)aeψ  are different.  This shift is 

( )( )2 22 22 (0) (0)
5

ex grIS a s e a sE E E Ze R R2πδ δ ψ ψ∆ = − = − −  

and is analogous to the isotope shift observed in atomic transitions (Breit, 1958). 
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Table 2.1 

 
Source Lattice 
 

 
Crystal 

Structure 
 

 
fs

1) 
 
2 )

Dθ  
 

1SE∆ (mm/sec)3) 

 
Rhodium 
 

 
f.c.c. 

 
.70 

 
350 

 
-.114 

Copper " .61 340 -.226 

Palladium " .55 275 -.185 

Platinum " .53 230 -.347 

Gold " .37 165 -.632 

 
Molybdenum 
 

 
b.c.c. 

 
.64 

 
425 

 
-0.60 

Chromium " .60 400 +.152 

Tungsten " .52 380  

Tantalum " .52 230 -.033 

     

1) Values obtained by Quaim (1965).  For the case of Rh, Pd the values are quoted 

for the sources used. 

2) Obtained from specific heat measurements (Kittel, 1957). 

3) Shift quoted relative to natural iron (Mössbauer Data Index, 1966). 

 Only this relative shift is directly measurable and has been studied in detail for 

Fe, Sn, and Au.  For the 14.4 kev level in 57 119 197 57 Fe, it was found (Walker, et al., 

1961) that a decrease in the electron charge density produced an increase in the gamma 

ray transition energy from which it can be concluded that Rgr is larger than Rex.  Table 1 
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shows the shifts that have been generally observed for iron in the various host lattices.  A 

positive shift corresponds to a decrease (increase) in the source (absorber) transition 

energy. 

 No full explanation, which accounts quantitatively for the observed shifts, has as 

yet been given.  Some attempts have, however, been made for the transition metals by 

correlating the shifts with the filling of the d-shells (Qaim, 1967) taking into 

consideration the effect of the shielding of the 3s by the 3d electrons (Walker, et al., 

1961; Ingalls, 1967). 

6. Electric Quadrupole Splitting. 

 In the previous section the nucleus was assumed to be spherical and the charge 

distribution uniform.  More generally, nuclei that have a spin 1I 0, 
2

≠  will exhibit an 

electric quadrupole moment eQ, which in the presence of a local electric field gradient 

will split the line.  If this gradient is axially symmetrical about the crystal z-axis, the 

energy splitting will be given by (Abragam, 1961). 

( )
2

2 3 - ( 1)
4 (2 -1)Q I

e qQE m
I I

= +I I  
... 6.1.

where eq and are the spin quantum numbers of the particular nuclear 

level.  The substates ±m

2 2/V z= ∂ ∂ I,m

I will be degenerate and in fact will remain so even in the 

presence of an axially non-symmetrical field gradient if I is half integral.  In the latter 

case Equation 2.6.1 will be modified by an asymmetry parameter. 
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 For 57Fe with gr
1

2
I =  and ex

3

2
I = , the ground state is spherical, and any 

quadrupole splitting will only be due to the excited state.  Because of the double 

degeneracy of the four substates ± 1

2
, ± 3

2
 a doublet will result. 

 The electric field gradient will vanish in a lattice of cubic symmetry like that of 

natural iron and many of the other transition metals.  In other substances like FeF2 

(Wertheim, 1961) a splitting is observed that can be readily resolved.  In the ferro 

cyanides the quadrupole splitting cannot be resolved and is only deduced from the 

broadened transmission line.  As the intensity of the two components in the doublet 

varies, depending on the angle θ  between the crystal z-axis and the direction of emission 

(absorption) of the gamma ray, the unresolved splitting will appear as an angle dependent 

shift of the transmission line (Evans, 1968).  The angular dependence of the intensity of 

the two components is characterized by the classical radiation pattern for ∆m = 0,1 and is 

given by (Wertheim, 1964) (see next section) 

( )2

2

3 1 cos   for 1
2

31 sin   for 0
2

m

m

θ

θ

+ ∆

+ ∆ =

= ±
 

 
... 6.2.

The ratio of the two intensities varies from 3 for θ  = 0° to 3/5 for θ  = 90°.  For a 

polycrystal the intensities will be equal unless the recoilless fraction should also be angle 

dependent as is the case for potassium ferrocyanide. 

7. Magnetic Hyperfine Splitting. 

 The interaction between the nuclear magnetic dipole moment µ and the magnetic 

field at the nucleus H will produce a splitting of each nuclear level into 2I + 1 
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components.  Each substate mI, where mI takes on the values I, I-1, .... -I, will be shifted 

by an amount 

M n IE g Hmµ∆ =  
where g is the nuclear gyromagnetic ratio, and nµ the nuclear magneton e  equal 

to 3.15 x 10

/ 2 pћ m c

-12 eV/gauss.  As the various components are equally spaced and for 

ferromagnetic substances like iron easily resolved, it becomes easy to measure the 

relative transition probabilities between given substates, as calculated by squaring the 

corresponding Clebsch Gordon coefficients, and the radiation pattern relative to the 

direction of the magnetic field.  For a pure multipole transition the angular dependence of 

the individual components is given by ( )
2

,mL ,θ ψΧ , where L is the angular momentum 

carried off by the gamma ray and θ  is the angle between the direction of the magnetic 

field and that of the emission (absorption) of the gamma rays.  ( )
2

ψΧ  is the vector 

spherical harmonic (Jackson, 1963). 

, ,
mL θ

 For the MI transition of 57Fe (14.4 kev) the angular dependent intensity of the 

various transitions is given by  
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 For an unmagnetized ferromagnetic material, the intensity of the three 

components will be in the ratio 3:2:1.  Often one finds, however, that thin foils are 

preferentially magnetized in the plane of the foil, which tends to increase the intensity of 
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the 1
2 2

± → ±
1  transition, while saturation effects, arising from the thickness of the 

absorber, tend to reduce the outer components. 

 Given the knowledge of the nuclear magnetic moment of the ground state of, for 

instance, 57Fe (0.0902 nm) one can readily deduce the magnetic moment of the excited 

state (0.155 nm) and the effective field Heff at the nucleus.  The magnetic hyperfine 

structure has been used extensively for that purpose and also to determine the sign of Heff.  

For iron at room temperature Heff is –330kG, and the resulting energy splitting can be 

used as a convenient standard (Preston, et al., 1962). 

 Experiments conducted with Co-Pd and Fe-Pd alloys of varying concentrations 

have indicated (Clogston, et al., 1962) that the palladium atoms take part in the magnetic 

coupling so that quite small concentrations of a ferromagnetic metal, like 0.5% of iron, 

can produce ferromagnetism in the alloy.  No such effect has been observed for rhodium 

alloys. 

8. Thermal Shift. 

 Pound and Rebka (1960) and Josephson (1960) have pointed out that gamma rays 

emitted without recoil are still affected by the mean square velocity £νs
2§, £νa

2§ of the 

nuclei in the source and absorber, respectively, which gives rise to an energy shift 

( )2 2
2

1
2

th
s a

E
E c

∆
= −v v  

This shift can be explained in terms of the relativistic second order Doppler shift or as 

being due to the resulting change in mass of the nucleus during the emission or 

absorption of a gamma quantum.  Both views appear to be equivalent. 
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 When the source and the absorber are both at the same temperature, the 

corresponding shifts occurring during the emission and absorption processes will 

compensate each other.  Expressing this shift as a function of the net temperature 

difference between that of the absorber and the source, one obtains 

2
2

1 1   
2

E
E T c T

v∂ ∂
= −

∂ ∂
 

which for a monatomic solid with harmonic lattice forces becomes 

2 2

1 1    
2 2

pCE U
E T Mc T c

∂ ∂
= − =

∂ ∂
 

where U is the lattice energy per atom (of mass M) and Cp is the specific heat of the 

lattice. 

 For iron at room temperature the total temperature shift observed was (-2.09 ± 

0.05) x 10-15 per °K (Pound, et al., 1961).  It consists of the contribution of the second 

order Doppler shift (-2.24 x 10-15 per °K) and a correction factor due to the temperature 

dependent contribution of the isomer shift arising from the thermal expansion of the 

lattice. 

 The second order Doppler shift has also recently been used to establish the 

presence of localized vibrational modes for dilute iron impurities in a vanadium lattice 

and to detect changes in the force constant between the iron and neighbouring atoms 

(Mannheim and Simopolous, 1968). 

9. Pressure Effects. 

 An increase in the ambient pressure at the source and the absorber not only 

increases the recoilless fraction of both, but it also affects the isomeric and the thermal 

shifts.  Pound, et al., (1961) have given the relative contribution of each as 
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where a is the proportionality constant relating the isomeric shift with 2(0)ψ .  The first 

contribution is the predominant one (~ 95%) and has been attributed by the above authors 

as being due to a change of the 4s electron density 2
4 (0)sψ .  This effect has been 

examined in more detail for the transition metals (Ingalls, et al., 1967).  It was found that 

the above conclusion by Pound, et al., is not necessarily accurate for some of the metals 

like Fe, Ti, and Cu, where, most likely, the 3s electron density 2
3 (0)sψ  is affected by the 

shielding of the outer d electrons giving rise to a small additional volume dependence.  

The observed pressure induced shifts vary from 1.5 x 10-4 mm/sec per kbar pressure for 

platinum to 6.4 x 10-4 mm/sec per kbar for iron and vanadium, with 3.1 x 10-4 mm/sec per 

kbar for palladium.  This indicates that the pressures reached with the ultracentrifuge 

(~ 10 kbar) can be neglected. 

10. Relaxation Effects. 

 So far only time independent hyperfine interactions have been discussed.  

Generally one would also expect time dependent ones to exist.  They may arise from 

effects associated with the excitation of the Mössbauer level or from others involving 

electronic relaxations. 

 Transients, as occur when the nucleus is perturbed by a previous nuclear 

transition or reaction, can leave the atom in different charge states.  If the time needed for 

the atom to return to its equilibrium charge state is comparable with the nuclear life time, 

the emission spectrum will exhibit the shifts and/or splittings representative of the various 
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Chapter 2-16 

charge states present.  This has been observed for 57Co (E.C.→57Fe) in 

Co(NH4SO4).6H2O where the emission spectrum could be decomposed into two shifted 

and quadrupole split lines due to Fe++ and Fe+++ (Ingalls and De Pasquali, 1965).  It 

would also be reasonable to expect that the perturbations occurring during the creation of 

the Mössbauer level could decrease the effective fs.  No effect, however, using Pd and Cu 

lattices has been found (Craig, et al., 1964). 

 Recently paramagnetic hyperfine interactions have been investigated for a number 

of substances (Wickman, et al., 1966; Lang and Marshall, 1966) where relaxation effects 

arise because of spin-spin or spin-lattice interactions.  Usually these effects are only 

substantial at low temperatures when the relaxation times are larger than the Larmor 

precession period of the nucleus, though for a few special cases, like the Fe-Pd alloys, 

they might still have to be considered at room temperature. 


