Enter the content which will be displayed in sticky bar

Consequences of Relativity?s Failure To Control Assumptions

Neil E. Munch
Year: 2005
Keywords: light wave equations, special relativity, Lorentz transformation
Like an Escher print with its contradictory viewing assumptions, relativity and related cosmology theories are also flawed by use of contradictory assumptions. For example, the light wave equations were an assumed basis of special relativity (SRT) equations. So, the time terms in SRT must be the elapsed time of light travel along the length term regardless of its direction, not clock time or clock rates or the age of twins as often assumed. Consequently, its Lorentz transformation (E-LT) is critically flawed. When light passes to and fro over a moving length, the universality of its derivation assumptions requires that length to both contract and dilate at the same instant. That?s impossible. SRT?s erroneous shift to focus on clocks and their simultaneity has side-tracked progress in modern physics for decades. Zero rest mass of a photon, assumed to avoid SRT?s requirement for infinite mass at light speed c, is contradicted by the finite rest mass of photons in Bose-Einstein condensate experiments. The presumption by SRT that objects cannot exceed speed c can be rejected by the above flaws and because super-luminal speed luminosities are frequently observed in astronomy. Yet, the myth remains that an object?s speed is limited to c. It?s quite clear that Minkowski?s space-time concepts contradict E-LT basis in light wave equations, if one only looks. Space-time is easily rejected yet it remains as truth in text books. SRT basis on constant velocity and constant c constrain its use to rectilinear motion. Yet, SRT and its erroneous space-time concepts formed the basis of general relativity (GRT) and the subsequent Big Bang concepts. Both have questionable validity. All such contradictory assumptions and their consequences could have been avoided by good assumptions control.